|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F2C-CCl=ClC-CF2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chlorine
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
in 1,2-Dichlorotetrafluorocyclobutene
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calculation of the nitrogen nqcc's in 1,2-dichlorotetrafluorocyclobutene was made on the ro and rs/ro molecular structure of Van Wynsberghe et al. [1]. These are compared
with the experimental nqcc's [1,2] in Tables 1 - 5. Structure
parameters are given in Table 6. |
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 - 4, subscripts a,b,c refer to the principal axes of the inertia
tensor, subscripts x,y,z to the principal axes of the nqcc tensor.
The nqcc y-axis is chosen coincident with the inertia c-axis, these
are perpendicular to the plane of the molecule. Ø (degrees)
is the angle between its subscripted parameters. ETA = (Xxx
- Xyy)/Xzz. |
|
|
RMS is the root mean square
difference between calculated and experimental nqcc's (percent of the
average absolute experimental nqcc). RSD is the residual standard
deviation of calibation of the B1LYP/TZV(3df,2p) model for
calculation of the nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. 35Cl nqcc's
in F2C-C35Cl=35ClC-CF2 (MHz). Calcuation was made on the ro and rs/ro molecular structures [1]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. ro
|
|
Calc. rs/ro |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
17.34 |
- |
17.78 |
- |
17.635(6) |
|
|
Xbb |
- |
15.68 |
- |
15.28 |
- |
14.966 * |
|
|
Xcc |
|
33.02 |
|
33.06 |
|
32.602 * |
|
|
|Xab| |
|
59.72 |
|
59.89 |
|
57.887(27) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.50 (2.3 %) |
|
0.33 (1.5 %) |
|
|
|
|
RSD |
|
0.49 (1.1 %) |
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
43.22 |
|
43.38 |
|
41.602 ** |
|
|
Xyy |
|
33.02 |
|
33.06 |
|
32.602 |
|
|
Xzz |
- |
76.24 |
- |
76.44 |
- |
74.203 |
|
|
ETA |
- |
0.134 |
- |
0.135 |
- |
0.121 |
|
|
Øz,a |
|
44.60 |
|
44.40 |
|
44.34 |
|
|
Øa,CCl |
|
44.80 |
|
44.62 |
|
|
|
|
Øz,CCl |
|
0.20 |
|
0.22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Derived here from Xaa and Xbb - Xcc = - 47.568(6) MHz. |
|
|
** The principal values of the nqcc tensor were calculated here from the experimental data using Z. Kisiel's QDIAG.f. (See http://info.ifpan.edu.pl/~kisiel/prospe.htm.) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Cl nqcc's
in F2C-C35Cl=37ClC-CF2 (MHz). Calcuation was made on the ro and rs/ro molecular structures [1]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. ro
|
|
Calc. rs/ro |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
|
Xaa(35Cl) |
|
30.70 |
|
32.68 |
|
29.209(11) |
|
|
Xbb |
- |
63.72 |
- |
65.74 |
- |
61.810 * |
|
|
Xcc |
|
33.01 |
|
33.06 |
|
32.602 * |
|
|
|Xab| |
|
36.58 |
|
34.16 |
|
35.96(20) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
1.41 (3.4 %) |
|
3.04 (7.4 %) |
|
|
|
|
RSD |
|
0.49 (1.1 %) |
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xaa(37Cl) |
- |
51.01 |
- |
52.90 |
- |
49.975(13) |
|
|
Xbb |
|
24.99 |
|
26.85 |
|
24.280 ** |
|
|
Xcc |
|
26.02 |
|
26.05 |
|
25.696 ** |
|
|
|Xab| |
|
27.78 |
|
25.28 |
|
26.62(25) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.75 (2.2 %) |
|
2.26 (6.8 %) |
|
|
|
|
RSD |
|
0.44 (1.1 %) |
|
0.44 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Derived here from Xaa and Xbb - Xcc = - 94.412(1) MHz. |
|
|
** Derived here from Xaa and Xbb - Xcc = - 1.416(75) MHz. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. 37Cl nqcc's
in F2C-C37Cl=37ClC-CF2 (MHz). Calcuation was made on the ro and rs/ro molecular structures [1]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. ro
|
|
Calc. rs/ro |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
13.67 |
- |
14.01 |
- |
14.89(3) |
|
|
Xbb |
- |
12.35 |
- |
12.04 |
- |
10.633(7) |
|
|
Xcc |
|
26.02 |
|
26.05 |
|
25.523(6) |
|
|
|Xab| |
|
47.07 |
|
47.20 |
|
55.4(1) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
1.25 (7.4 %) |
|
1.01 (5.9 %) |
|
|
|
|
RSD |
|
0.44 (1.1 %) |
|
0.44 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. 35Cl(5,6) nqcc's
in F2C-C35Cl(5)=35Cl(6)13C-CF2 (MHz). Calcuation was made on the ro and rs/ro molecular structures [1]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. ro
|
|
Calc. rs/ro |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
|
Xaa(5) |
- |
13.15 |
- |
13.08 |
- |
13.24(21) |
|
|
Xbb |
- |
19.86 |
- |
19.98 |
- |
19.22 * |
|
|
Xcc |
|
33.01 |
|
33.06 |
|
32.46 * |
|
|
|Xab| |
|
59.64 |
|
59.81 |
|
56.2(23) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.49 (2.3 %) |
|
0.56 (2.6 %) |
|
|
|
|
RSD |
|
0.49 (1.1 %) |
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xaa(6) |
- |
21.52 |
- |
22.47 |
- |
22.02(22) |
|
|
Xbb |
- |
11.49 |
- |
10.59 |
- |
10.70 ** |
|
|
Xcc |
|
33.01 |
|
33.06 |
|
32.72 ** |
|
|
|Xab| |
|
59.52 |
|
59.61 |
|
59.5(22) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.56 (2.6 %) |
|
0.33 (1.5 %) |
|
|
|
|
RSD |
|
0.44 (1.1 %) |
|
0.44 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Derived here from Xaa and Xbb - Xcc = - 51.69(9) MHz. |
|
|
** Derived here from Xaa and Xbb - Xcc = - 43.41(9) MHz. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 5. 35Cl nqcc's
in F2C-C35Cl(5)=35Cl(6)C-13CF2 (MHz). Calcuation was made on the ro and rs/ro molecular structures [1]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. ro
|
|
Calc. rs/ro |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
|
Xaa(5) |
- |
25.39 |
- |
26.80 |
- |
25.47(25) |
|
|
Xbb |
|
- 7.63 |
|
- 6.26 |
|
- 7.06 * |
|
|
Xcc |
|
33.02 |
|
33.06 |
|
32.54 * |
|
|
|Xab| |
|
59.07 |
|
59.02 |
|
59.1(8) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.43 (2.0 %) |
|
0.95 (4.4 %) |
|
|
|
|
RSD |
|
0.49 (1.1 %) |
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xaa(6) |
|
- 9.28 |
|
- 8.73 |
|
- 9.76(25) |
|
|
Xbb |
- |
23.74 |
- |
24.33 |
- |
22.91 ** |
|
|
Xcc |
|
33.02 |
|
33.06 |
|
32.67 ** |
|
|
|Xab| |
|
59.29 |
|
59.40 |
|
56.1(8) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.59 (2.7 %) |
|
1.04 (4.8 %) |
|
|
|
|
RSD |
|
0.49 (1.1 %) |
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Derived here from Xaa and Xbb - Xcc = - 39.60(8) MHz. |
|
|
** Derived here from Xaa and Xbb - Xcc = - 55.58(6) MHz. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 6. 1,2-Dichlorotetrafluorocyclobutene. Structure parameters, ro and rs/ro ( and degrees). The input file for calculation of the efg's was constructed with the rs atomic coordinates for the carbon and chlorine atoms, and ro coordinates of the fluorine atoms, given in Table 4 of ref. [1]. |
|
|
|
|
|
|
ro |
rs/ro |
|
|
|
|
|
C(1)C(2) |
1.305(4) |
1.311(15) |
C(2)C(3) |
1.495(3) |
1.487(15) |
C(3)C(4) |
1.545(4) |
1.551(15) |
CCl |
1.702(3) |
1.705(15) |
CF |
1.354(2) |
1.353 |
ClC=C |
134.80(20) |
134.62(60) |
C=C-C |
94.62(23) |
94.63(60) |
C-C-C |
85.38(20) |
85.37(60) |
FC(3)C(2) |
116.52(13) |
116.59 |
FCF |
106.38(19) |
106.46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] A.W. Van Wynsberghe, S.A.Peebles, R.A.Peebles, and R.L.Kuczkowski, J.Phys.Chem. A 104,8702(2000). |
|
|
[2] B.E.Long, E.A.Arsenault, L.Hansen, and S.A.Cooke, Abstract RE11, 69th International
Symposium on Molecular Spectroscopy, Champaign-Urbana, Ill. 2014.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c-CHCl=CHCl |
CH2=CCl2 |
1,2-Dichloroperfluorocyclopentene
|
|
|
|
1,2-Dichloroperfluorocyclohexene |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Chlorine |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12DCTFCButene.html |
|
|
|
|
|
|
Last
Modified 5 Aug 2014 |
|
|
|
|
|
|
|
|
|
|