C2H4O




 









Oxygen


Nuclear Quadrupole Coupling Constants


in Ethylene Oxide


 







 
 
Calculation was made of the oxygen nqcc's in ethylene oxide on the rmrho structure of Berry and Harmony [1].  These are compared with the experimental nqcc's [2] in Table 1. Structure parameters are shown in Table 2.

 


 




In Table 1, subscripts a,b,c refer to the principal axes of the inertia tensor.  RMS is the root mean square difference between calculated and experimental nqcc's (percentage of average experimental nqcc).  RSD is the residual standard deviation of calibration of the model for calculation of the nqcc's.
 
 
 
   







Table 1.  Oxygen nqcc's in Ethylene Oxide (MHz).  Calculation was made on the rmrho structure of Berry and Harmony [1].
 
Calc. = B1B95/6-311++G(3df,3p).
 




Calc.
Expt. [2]
   






17O Xaa - 5.315 - 5.2(1)
Xbb - 7.551 - 7.4(1)
Xcc 12.866 12.6(1)
 
RMS 0.19 (2.2 %)
RSD 0.039 (1.4 %)
 
Calc. = B1LYP/6-311++G(3df,3p).
 
17O Xaa - 5.333 - 5.2(1)
Xbb - 7.588 - 7.4(1)
Xcc 12.921 12.6(1)
 
RMS 0.23 (2.7 %)
RSD 0.041 (1.4 %)
 
Calc. = B3LYP/6-311++G(3df,3p).
 
17O Xaa - 5.332 - 5.2(1)
Xbb - 7.608 - 7.4(1)
Xcc 12.940 12.6(1)
 
RMS 0.24 (2.9 %)
RSD 0.044 (1.5 %)
 

 
 
Table 2.  Molecular structure parameters, rmrho [1] (Å and degrees).
 
CC 1.4594(4)
CH 1.0840(4)
CO 1.4252(3)
HCH 116.75(7)

   
 

[1] R.J.Berry and M.D.Harmony, Struct.Chem. 1,49(1988).

[2] R.A.Creswell and R.H.Schwendeman, Chem.Phys.Lett. 27,521(1974).

 








 







C2H4S
 

 








Table of Contents




Molecules/Oxygen
 

 













C2H4O.html






Last Modified 31 Jan 2005