|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CF3CCl3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chlorine |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
in 1,1,1-Trichloro-2,2,2-trifluoroethane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chlorine
nqcc's in all four possible chlorine isotopic species of
1,1,1-trichloro-2,2,2-trifluoroethane were determined by Kisiel et al.
[1].
|
|
|
|
|
|
|
|
|
|
|
|
|
Calculation of the chlorine nqcc's was made on an approximate equilibrium molecular structure (~re) derived
ab initio (see below), and on an reSE
structure derived in Ref. [1]. These are compared with the
experimental nqcc's in Tables 1,3 - 7. Structure parameters are
given in Table 2. |
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1,3 - 7, suscripts a,b,c refer to principal inertial axes, x,y,z to principal
axes of the nqcc tensor. Ø (degrees) is the angle between its subscripted parameters.
ETA = (Xxx - Xyy)/Xzz. |
|
|
RMS is the root mean square
difference between calculated and experimental diagonal nqcc
(percentage of average of absolute experimental nqcc's). RSD is
the residual standard deviation of the calibration of the B1LYP/TZV(3df,2p) computional model for calculation of the nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. 35Cl(1) nqcc's in CF3C35Cl3 (MHz). Calculation was made on ~re and reSE structures.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / ~re
|
|
Calc / reSE |
|
Expt. [1]
|
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
27.52
|
|
27.44 |
|
27.55110(58)
|
|
|
Xbb |
-
|
69.54
|
- |
69.52 |
-
|
69.44020(91)
|
|
|
Xcc |
|
42.02
|
|
42.09 |
|
41.88910(91)
|
|
|
Xab |
|
37.94
|
|
38.16 |
-
|
37.760(12) *
|
|
|
|
|
|
|
|
|
|
|
|
RSM
|
|
0.10 (0.21 %)
|
|
0.14 (0.30 %)
|
|
|
|
|
RSD
|
|
0.49 (1.1 %)
|
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
40.59
|
|
40.65 |
|
40.5177(74)
|
|
|
Xyy |
|
42.02 |
|
42.09 |
|
41.88910(91)
|
|
|
Xzz |
-
|
82.61
|
- |
82.74 |
-
|
82.4069(74)
|
|
|
ETA
|
|
0.017
|
|
0.017 |
|
0.01664(9)
|
|
|
Øz,a |
|
70.99
|
|
70.90 |
|
71.0475(44)
|
|
|
Øa,CCl |
|
71.40
|
|
71.32
|
|
|
|
|
Øz,CCl |
|
0.41
|
|
0.42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Here, and in Tables that
follow, differences in algebraic signs of the off-diagonal components
are due only to differences in orientation of the moleule with respect
to positive/negative sense of the inertial axes. Only magnitudes
of these components are to be compared.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivation of Approximate Equilibrium Molecular Structure: The molecular structure was optimized
at the MP2/6-311+G(d,p) level of theory, the optimized CC single bond length then corrected using the
equation obtained from linear regression analysis of the data given in
Table IX of Ref. [2]. Likewise, the optimized CF bond lengths were
corrected by regression analysis of the data given in Table VI of Ref. [3].
For the CCl bonds, the structure was optimized at the MP2/6-311+G(2d,p)
level and corrected by linear regression analysis of the data given in Table
4 of Ref. [4].
Interatomic angles used in the calculation are those given by B3P86/6-311+G(3d,3p)
partial optimization (with corrected bond lengths held fixed). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Molecular structure parameters (Å and degrees), ~re and reSE [1],
|
|
|
|
|
|
|
|
~re |
reSE |
|
|
CCl |
1.7546 |
1.7586(20)
|
|
|
CC |
1.5408 |
1.5493(12)
|
|
|
CF |
1.3254 |
1.3251(21)
|
|
|
CCF |
110.42 |
110.19(31)
|
|
|
CCCl |
108.60 |
108.68(21)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. 37Cl(1) nqcc's in CF3C37Cl35Cl2 (MHz). Calculation was made on ~re and reSE structures.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / ~re
|
|
Calc / reSE |
|
Expt. [1]
|
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
18.77
|
|
18.72 |
|
18.8698(16)
|
|
|
Xbb |
-
|
51.88
|
- |
51.89 |
-
|
51.8846(17)
|
|
|
Xcc |
|
33.12
|
|
33.17 |
|
33.0148(17)
|
|
|
Xab |
|
33.30
|
|
33.44 |
-
|
33.180(44)
|
|
|
|
|
|
|
|
|
|
|
|
RSM
|
|
0.08 (0.24 %)
|
|
0.13 (0.36 %)
|
|
|
|
|
RSD
|
|
0.49 (1.1 %)
|
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
31.99
|
|
32.04 |
|
31.995(30)
|
|
|
Xyy |
|
33.12 |
|
33.17 |
|
33.0148(17)
|
|
|
Xzz |
-
|
65.11
|
- |
65.21 |
-
|
65.010(30)
|
|
|
ETA
|
|
0.017
|
|
0.017 |
|
0.0157(5)
|
|
|
Øz,a |
|
68.34
|
|
68.28 |
|
68.418(19)
|
|
|
Øa,CCl |
|
68.75
|
|
68.70
|
|
|
|
|
Øz,CCl |
|
0.41
|
|
0.42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. 35Cl(2,3) nqcc's in CF3C37Cl35Cl2 (MHz). Calculation was made on ~re and reSE structures.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / ~re
|
|
Calc / reSE |
|
Expt. [1]
|
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
29.24
|
|
29.15 |
|
29.2276(9)
|
|
|
Xbb |
|
12.41
|
|
12.47 |
|
12.3792(15)
|
|
|
Xcc |
-
|
41.65
|
-
|
41.62 |
-
|
41.6068(15)
|
|
|
Xab |
-
|
18.27
|
-
|
18.39 |
|
18.130(35)
|
|
|
Xac |
-/+
|
30.59
|
-/+
|
30.80
|
-/+
|
30.459(24)
|
|
|
Xbc |
-/+
|
49.77
|
-/+
|
49.79
|
+/-
|
49.6361(24)
|
|
|
|
|
|
|
|
|
|
|
|
RSM
|
|
0.03 (0.11 %)
|
|
0.07 (0.24 %)
|
|
|
|
|
RSD
|
|
0.49 (1.1 %)
|
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
40.59
|
|
40.65 |
|
40.486(16)
|
|
|
Xyy |
|
42.02 |
|
42.09 |
|
41.8875(25)
|
|
|
Xzz |
-
|
82.61
|
- |
82.74 |
-
|
82.373(16)
|
|
|
ETA
|
|
0.017
|
|
0.017 |
|
0.0170(10)
|
|
|
Øz,CCl |
|
0.41
|
|
0.42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 5. 35Cl(1) nqcc's in CF3C35Cl37Cl2 (MHz). Calculation was made on ~re and reSE structures.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / ~re
|
|
Calc / reSE |
|
Expt. [1]
|
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
30.58
|
|
30.50 |
|
30.5494(41)
|
|
|
Xbb |
|
42.02
|
|
42.09 |
|
41.8697(85)
|
|
|
Xcc |
-
|
72.60
|
-
|
72.59 |
-
|
72.4191(85)
|
|
|
Xac |
|
33.65
|
|
33.91 |
-
|
33.72(19)
|
|
|
|
|
|
|
|
|
|
|
|
RSM
|
|
0.14 (0.29 %)
|
|
0.16 (0.33 %)
|
|
|
|
|
RSD
|
|
0.49 (1.1 %)
|
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
40.59
|
|
40.65 |
|
40.61(10)
|
|
|
Xyy |
|
42.02 |
|
42.09 |
|
41.8697(85)
|
|
|
Xzz |
-
|
82.61
|
- |
82.74 |
-
|
82.48(10)
|
|
|
ETA
|
|
0.017
|
|
0.017 |
|
0.0153(13)
|
|
|
Øz,a |
|
73.44
|
|
73.33 |
|
73.389(75)
|
|
|
Øa,CCl |
|
73.85
|
|
73.75
|
|
|
|
|
Øz,CCl |
|
0.41
|
|
0.42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 6. 37Cl(2,3) nqcc's in CF3C35Cl37Cl2 (MHz). Calculation was made on ~re and reSE structures.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / ~re
|
|
Calc / reSE |
|
Expt. [1]
|
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
20.39
|
|
20.33 |
|
20.4401(27)
|
|
|
Xbb |
-
|
32.82
|
-
|
32.80 |
-
|
32.7801(48)
|
|
|
Xcc |
|
12.43
|
|
12.47 |
|
12.3399(48)
|
|
|
Xab |
-/+
|
27.50
|
-/+
|
27.64 |
-/+
|
27.06(17)
|
|
|
Xac |
-
|
15.35
|
-
|
15.43
|
|
15.33(20)
|
|
|
Xbc |
-/+
|
36.93
|
-/+
|
36.95
|
+/-
|
36.860(17)
|
|
|
|
|
|
|
|
|
|
|
|
RSM
|
|
0.07 (0.31 %)
|
|
0.10 (0.46 %)
|
|
|
|
|
RSD
|
|
0.49 (1.1 %)
|
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
31.99
|
|
32.04 |
|
31.77(11)
|
|
|
Xyy |
|
33.12 |
|
33.17 |
|
33.011(43)
|
|
|
Xzz |
-
|
65.11
|
- |
65.21 |
-
|
64.79(11)
|
|
|
ETA
|
|
0.017
|
|
0.017 |
|
0.0191(19)
|
|
|
Øz,CCl |
|
0.41
|
|
0.42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 7. 37Cl(1) nqcc's in CF3C37Cl3 (MHz). Calculation was made on ~re and reSE structures.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / ~re
|
|
Calc / reSE |
|
Expt. [1]
|
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
21.68
|
|
21.62 |
|
21.7161(30)
|
|
|
Xbb |
-
|
54.80
|
- |
54.79 |
-
|
54.7179(13)
|
|
|
Xcc |
|
33.12
|
|
33.17 |
|
33.0035(13)
|
|
|
Xab |
|
29.90
|
|
30.07 |
-
|
29.60(13)
|
|
|
|
|
|
|
|
|
|
|
|
RSM
|
|
0.08 (0.23 %)
|
|
0.12 (0.32 %)
|
|
|
|
|
RSD
|
|
0.49 (1.1 %)
|
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
31.99
|
|
32.04 |
|
31.838(74)
|
|
|
Xyy |
|
33.12 |
|
33.17 |
|
33.0035(13)
|
|
|
Xzz |
-
|
65.11
|
- |
65.21 |
-
|
64.839(74)
|
|
|
ETA
|
|
0.017
|
|
0.017 |
|
0.0180(12)
|
|
|
Øz,a |
|
70.99
|
|
70.90 |
|
71.123(61)
|
|
|
Øa,CCl |
|
71.40
|
|
71.32
|
|
|
|
|
Øz,CCl |
|
0.41
|
|
0.42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] Z.Kisiel, L.Pszczółkowski,
E.Białkowska-Jaworska, M.Jaworski, I.Uriarte, F.J.Basterretxea, and
E.J.Cocinero, J.Mol.Spectrosc. 352,1(2018).
|
|
|
[2] J.Demaison, J.Cosléou, R.Bocquet,
and A.G.Lesarri, J.Mol. Spectrosc. 167,400(1994). |
|
|
[3] R.M.Villamañan, W.D.Chen,
G.Wlodarczak, J.Demaison, A.G.Lesarri, J.C.López, and J.L.Alonso,
J.Mol.Spectrosc. 171,223(1995). |
|
|
[4] I.Merke, L.Poteau, G.Wlodarczak,
A.Bouddou, and J.Demaison, J.Mol.Spectrosc. 177,232(1996). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CFCl3 |
SiHCl3 |
CH3CCl3 |
OPCl3 |
|
|
NCl3 |
PCl3 |
AsCl3 |
SPCl3 |
|
|
CH3Cl |
CH2Cl2 |
CHCl3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Chlorine |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CF3CCl3.html |
|
|
|
|
|
|
Last
Modified 21 July 2018 |
|
|
|
|
|
|
|
|
|
|