cyclic-CH2CH2CHNC























 





Nitrogen


Nuclear Quadrupole Coupling Constants


in Cyclopropylisocyanide


 








 








 








Calculation of the nitrogen nqcc's in cyclopropylisocyanide was made on molecular structures obtained by PBE1PBE/6-31G(3d,3p) and BPE1BPE/6-311+G(3d,3p) optimization.  These are compared with the experimental nqcc's [1] in Table 1.  Structure parameters are given in Table 2.

 








In Table 1, subscripts a,b,c refer to the principal axes of the inertia tensor; x,y,z to the principal axes of the nqcc tensor.  The nqcc y-axis is chosen coincident with the inertia b-axis, these are perpendicular to the molecular plane.  Ø (degrees) is the angle between its subscripted parameters.  ETA = (Xxx - Xyy)/Xzz.

RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation of the B3PW91/6-311+G(df,pd) model for calculation of the nitrogen efg's/nqcc's.

 








 








   








Table 1.  14N nqcc's in Cyclopropylisocyanide (MHz).  Calculation was made on (1) PBE1PBE/6-31G(3d,3p) and (2) PBE1PBE/6-311+G(3d,3p) optimized structures.

   










Calc (1)
Calc (2)
Expt. [1]
   








Xaa
0.337
0.323
0.331(3)

Xbb - 0.098 - 0.092 - 0.138(9)

Xcc -
0.239 -
0.231 - 0.204(9)

|Xac|
0.286
0.279



 







RMS
0.027 (12. %)
0.026 (12. %)



RSD
0.030 (1.3 %)
0.030 (1.3 %)



 







Xxx -
0.357
-
0.347




Xyy -
0.098 -
0.092



Xzz
0.455
0.439



ETA - 0.568 - 0.580



Øz,a
22.42
22.60



Øa,NC
18.69
18.74



Øz,NC
  3.72

  3.86




 








 








 


Table 2.  Molecular optimized structure parameters: ropt(1) = PBE1PBE/6-31G(3d,3p) and ropt (2) = PBE1PBE/6-311+G(3d,3p) (Å and degrees).
 



 C
 C,1,B1
 C,1,B2,2,A1
 H,1,B3,2,A2,3,D1,0
 H,2,B4,1,A3,3,D2,0
 H,3,B5,1,A4,2,D3,0
 H,2,B6,1,A5,3,D4,0
 H,3,B7,1,A6,2,D5,0
 N,1,B8,2,A7,3,D6,0
 C,9,B9,1,A8,3,D7,0






   ropt(1)    ropt(2)


 B1=1.50239231
 B2=1.50239231
 B3=1.0845076
 B4=1.08353945
 B5=1.08353945
 B6=1.08384192
 B7=1.08384192
 B8=1.39368335
 B9=1.17143198
 A1=59.77857918
 A2=118.30324052
 A3=116.54823659
 A4=116.54823659
 A5=117.06634501
 A6=117.06634501
 A7=118.86929516
 A8=179.62391104
 D1=108.03074862
 D2=108.30484966
 D3=-108.30484966
 D4=-109.5097824
 D5=109.5097824
 D6=-108.4750738
 D7=145.31636934
 B1=1.50163845
 B2=1.50163845
 B3=1.0819369
 B4=1.0810289
 B5=1.0810289
 B6=1.0815039
 B7=1.0815039
 B8=1.39328142
 B9=1.16702295
 A1=59.83136681
 A2=118.32297758
 A3=116.50054017
 A4=116.50054017
 A5=116.98277346
 A6=116.98277346
 A7=118.80827445
 A8=179.64641339
 D1=108.06605261
 D2=108.22103568
 D3=-108.22103568
 D4=-109.43614583
 D5=109.43614583
 D6=-108.44724993
 D7=145.30785944
 





 








 








[1] E.Fliege, H.Dreizler, and R.Schwarz, J.Mol.Struct. 97,229(1983).


 








 








CH3CH2NC CH3NC CF3NC HCCNC

(CH3)3CNC C6H5NC CNCN HNC

CH2=CHNC







 








 








Table of Contents




Molecules/Nitrogen




 








 













CH2CH2CHNC.html






Last Modified 5 June 2016