GAMESS

Calculation of CI Nuclear Quadrupole Coupling Constants

on Approximate Equilibrium Molecular Structures

F, CI - Methanes

William C. Bailey

September 2007¹

Abstract

Calculations were made of CI nuclear quadrupole coupling constants on approximate equilibrium molecular structures of F, CI substituted methanes derived by MP2/aug-cc-pVTZ(GMS) optimization with empirically corrected bond lengths. The molecules are

Methyl Chloride, CH ₃ Cl	Chlorofluoromethane, CH ₂ FCI
Chlorodifluoromethane, CHF2CI	Chlorotrifluoromethane, CF3CI
Dichloromethane, CH ₂ Cl ₂	Dichlorofluoromethane, CHFCl ₂
Dichlorodifluoromethane, CF2Cl2	Trichloromethane (Chloroform), CHCl3
Trichlorofluoromethane, CFCI3	Carbon Tetrachloride, CCl4

Excellent agreement between calculated and experimental coupling constants is obtained; which agreement validates, at least in part, the derived structures. The results are as good on the r_{opt} structures as on the r_c structures, for which the bond lengths are corrected.

¹ Modified November 2007. Updated experimental nqcc's for dichlorofluoromethane [21].

Introduction

The nuclear quadrupole coupling constant tensor is the spectroscopic measurement of the energy of interaction of the electric quadrupole moment of the nucleus of an atom with the gradient of the molecular electric field at the site of the nucleus.

Quantum chemistry calculation of the electric field gradient (efg) tensor permits calculation of the nuclear quadrupole coupling constant (nqcc) tensor, the latter being directly proportional to the former. Techniques for this have been developed for a number of quadrupolar nuclei [1].

The accuracy of calculated nqcc's is, of course, sensitive to molecular structure. For calculation of near equilibrium structures, Demaison et al. [2 - 9] have shown in a series of publications that errors in quantum chemistry calculation of bond lengths at the MP2 level of theory are largely systematic and can be empirically corrected and that, with sufficiently large bases, accurate interatomic angles may be obtained *ab initio*.

Thus, we investigate here the efficacy of MP2/aug-cc-pVTZ(GMS) optimization, with and without empirically corrected bond lengths, of the molecular structures of the following molecules for calculation of the CI nqcc tensors.

Methyl Chloride, CH ₃ Cl	Chlorofluoromethane, CH ₂ FCI
Chlorodifluoromethane, CHF2CI	Chlorotrifluoromethane, CF ₃ Cl
Dichloromethane, CH ₂ Cl ₂	Dichlorofluoromethane, CHFCl ₂
Dichlorodifluoromethane, CF ₂ Cl ₂	Trichloromethane (Chloroform), CHCl ₃
Trichlorofluoromethane, CFCl3	Carbon Tetrachloride, CCl4

Carbon tetrachloride, which is not amenable to microwave studies, is included for completeness.

All calculations were made on a Mac G5 from Apple Inc. using the GAMESS (v. 7 Sept 06, R4) quantum chemistry package. Implementation in this package of the aug-ccpVTZ bases for Al-Ar include one additional tight d-function. This modification is denoted by the appendage GMS. For all calculations, the program deafults for convergence criteria and integration grid were used.

Molecular Structures

Molecular structures were optimized at the MP2/aug-cc-pVTZ(GMS) level of theory, the CF and CCI optimized r_{opt} bond lengths then corrected via the following equations:

CF r_c (Å) = 0.97814 × r_{opt} + 0.02332, RSD = 0.0014 Å,

CCI
$$r_c$$
 (Å) = 0.99708 × r_{opt} + 0.00679, RSD = 0.0020 Å.

RSD is the standard deviation of the residuals which may be taken as an estimate of the uncertainty in the corrected bond length, r_c. Derivation of these equations is discussed here; <u>CCI</u>, <u>CF</u>.

Nuclear Quadrupole Coupling Constants

The components of the nqcc tensor χ are related to those of the efg tensor q by

$$\chi_{ij} = (eQ/h) q_{ij}$$

where e is the fundamental electric charge, Q is the electric quadrupole moment of the nucleus, and h is Planck's constant. Subscripts ij refer to coordinate axes. Experimental nqcc's are measured in the principal axes system of the molecular inertia tensor. These axes are associated with the rotational constants A, B, and C; and are labeled a, b, and c. Principal axes of the nqcc tensor are here labeled x, y, and z.

Calibration of the B3LYP/TZV(3df,2p) model for calculation of the chlorine nqcc's yields

 χ_{ij} (³⁵Cl) = (-19.185 MHz/a.u.) q_{ij}, RSD = 0.68 MHz,

 χ_{ij} (³⁷Cl) = (-15.120 MHz/a.u.) q_{ij}, RSD = 0.60 MHz,

where q_{ij} are the calculated efg's. The numerical factors contain the constants e, Q, and h, and unit conversions. For ³⁵Cl, Q = -81.65(80) mb, and for ³⁷Cl, Q = -64.35(64) mb [11]. Derivation of these equations is discussed here.

Results

The results of this investigation - structure parameters and nuclear quadrupole coupling constants - are collected below in Tables 1 - 10.

In Tables 1 - 10; r_{opt} , r_c , and experimental structure parameters are compared. Coupling constants calculated on each structure are compared with experimental nqcc's. RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percent of average experimental nqcc). $\eta = (\chi_{xx} - \chi_{yy})/\chi_{zz}$ and φ (degrees) is the angle between its subscripted parameters.

Table 1. Methyl Chloride, CH₃Cl. Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	r _e a	Expt. ^b
СН	1.0840	1.0840	1.0872	
CCI	1.7754	1.7770	1.7756	
НСН	110.49	110.49	110.35	
χ _{zz} (³⁵ Cl)	-74.95	-75.01	-75.04	-74.7514(11)
χ _{zz} (³⁷ Cl)	-59.07	-59.12	-59.14	-58.9166(34)

a Ref. [12]. b Ref. [13]. Back to Top

Table 2. Chlorofluoromethane, CH₂FCI. Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	r _o a	Expt. ª
СН	1.0847	1.0847	1.09	
CCI	1.7625	1.7641	1.7621	
CF	1.3656	1.3590	1.370	
CICH	108.03	108.03	109.4	
CICF	110.11	110.11	110.1	
НСН	112.68	112.68	110.4	

χ _{aa} (³⁵ Cl)	-52.75	-52.76	-52.94	-52.570(26)
χьь	13.34	13.47	13.26	13.469(20)
Хсс	39.40	39.28	39.68	39.059(18)
χab	40.04	39.95	40.82	43.7(23)
RMS	0.27 (0.8 %)	0.17 (0.5 %)	0.43 (1.2 %)	
χхх	32.22	32.24	32.72	35.20(186)
χуу	39.40	39.28	39.68	39.059(18)
χzz	-71.62	-71.53	-72.40	-74.30(187)
η	0.1003	0.0984	0.0961	0.0519
φ _{z,a}	25.24	25.17	25.48	26(3)
φa,CCl	24.75	24.60	24.8	24.8
φz,CCl	0.48	0.57	0.7	
χ _{aa} (³⁷ Cl)	-41.74	-41.75	-41.90	-41.566(32)
Хрр	10.69	10.79	10.63	10.774(27)
χος	31.05	30.96	31.27	30.788(27)
lχabl	31.42	31.34	32.03	
RMS	0.19 (0.7 %)	0.14 (0.5 %)	0.35 (1.2 %)	

^a Ref. [14]. <u>Back to Top</u>

Parameter Expt. a,b r_s a **r**opt rc CH 1.098 1.0852 1.0852 CCI 1.7543 1.7560 1.742 CF 1.3422 1.3362 1.346 CICH 109.60 109.60 110.8 CICF 109.65 109.65 110.5 FCF 108.05 108.05 107.5 χ_{aa} (³⁵Cl) -65.33 -65.84 -65.0239(65) b -65.13 35.55 35.49 35.59 35.467(14) $\chi_{
m bb}$ 29.78 29.64 30.25 29.566(14) χсс Xac 26.88 26.80 26.46 24.0(5) RMS 0.22 (0.5 %) 0.08 (0.2 %) 0.62 (1.4 %) 36.85 36.70 37.05 35.3(25) χхх 35.55 35.49 35.59 35.467(14) χуу -72.40 -72.19 -72.64 -70.8(25) χzz -0.0179 -0.0167 -0.0202 0.0024(390) η 14.74 14.74 14.42 13.4(25) φz,a 14.39 14.3 14.32 φa,CCl 0.35 0.41 0.1 φz,CCI

Table 3. Chlorodifluoromethane, CHF_2CI . Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

χ _{aa} (³⁷ Cl)	-51.54	-51.38	-51.93	-51.342(31) ª
Хрр	28.02	27.97	28.05	27.920
Хсс	23.51	23.41	23.89	23.422
χac	21.10	21.03	20.77	
RMS	0.14 (0.4 %)	0.04 (0.1 %)	0.44 (1.3 %)	

a Ref. [15]. b Ref. [16]. Back to Top

Table 4. Trifluoromethyl Chloride, CF₃Cl. Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	r _{av} a	Expt. ^b
CF	1.3273	1.3216	1.3248	
CCI	1.7464	1.7481	1.7522	
FCF	108.57	108.57	108.57	
χ _{zz} (³⁵ Cl)	-78.16	-77.86	-78.28	-77.902(30)
χ _{zz} (³⁷ Cl)	-61.60	-61.37	-61.69	-61.496(166)

^a Ref. [17]. ^b Ref. [18]. <u>Back to Top</u>

Table 5. Dichloromethane, CH ₂ ³⁵ Cl ₂ . Structure parameters (Å and degrees). Chlorine
nuclear quadrupole coupling constants (MHz). Coupling constants in a given column
were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	rm ^{p a}	Expt. ^b
CCI	1.7628	1.7645	1.7636	
СН	1.0829	1.0829	1.0851	
CICCI	112.25	112.25	112.25	
нсн	111.70	111.70	111.90	
χ _{aa} (³⁵ Cl)	-42.19	-42.26	-42.23	-41.7418(11)
χъь	2.07	2.09	2.09	1.8004(12)
χος	40.12	40.17	40.13	39.9414(12)
χab	51.20	51.24	51.21	50.93(23)
RMS	0.32 (1.2 %)	0.37 (1.3 %)	0.34 (1.2 %)	
χxx	35.72	35.75	35.73	35.41(21)
Хуу	40.12	40.17	40.14	39.9414(12)
χzz	-75.84	-75.92	-75.87	-75.35(21)
η	0.058	0.058	0.058	0.060(3)
φz,a	33.31	33.30	33.30	33.43(5)
φa,CCl	33.87	33.87	33.88	
φz,CCl	0.56	0.57	0.58	

^a Ref. [19]. ^b Ref. [20]. <u>Back to Top</u>

The following three Tables - 6(a), 6(b), and 6(c) - are respectively CHF³⁵Cl₂, CHF³⁵Cl³⁷Cl, and CHF³⁷Cl₂.

Table 6(a). Dichlorofluoromethane, CHF³⁵Cl₂. Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	r _o -like ^a	Expt. ª
CCI	1.7549	1.7567	1.764(2)	
CF	1.3515	1.3453	1.335(5)	
СН	1.0840	1.0840	[1.09]	
HCF	109.40	109.40	[110.0]	
FCCI	109.25	109.25	109.6(2)	
CICCI	111.42	111.42	111.0(2)	
χ _{aa} (³⁵ Cl)	-41.23	-41.32	-40.95	-40.8921(19)
Хрр	11.50	11.60	10.92	11.4127(30)
χcc	29.73	29.72	30.03	29.4794(30)
χab ^b	45.03	44.96	45.53	44.63(43)
Xac	26.41	26.34	25.82	26.18(96)
lχpcl	13.87	13.87	13.88	13.63(51)
RMS	0.25 (0.9 %)	0.30 (1.1 %)	0.43 (1.6 %)	
χхх	36.60	36.64	36.76	36.19(92)
Хуу	38.89	38.80	38.79	38.6(12)
χzz	-75.49	-75.44	-75.54	-74.81(91)

η	0.030	0.029	0.029	0.032(28)
φz,CCl	1.09	1.17	1.10	

^a Ref. [21]. Values in square brackets are assumed. ^b The product $\chi_{ab} \chi_{ac} \chi_{bc}$ is negative.

Table 6(b). Dichlorofluoromethane, CHF³⁵Cl³⁷Cl. Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column. Structure parameters are given in Table 6(a).

Parameter	r _{opt}	r _c	r _o -like ^a	Expt. ª
χ _{aa} (³⁵ Cl)	-39.63	-39.73	-39.34	-39.3009(67)
Хрр	9.93	10.04	9.33	9.849(15)
χcc	29.70	29.69	30.00	29.452(15)
χab ^b	45.91	45.84	46.39	
lχac	26.20	26.14	25.61	
lχbcl	14.35	14.36	14.34	
RMS	0.24 (0.9 %)	0.30 (1.2 %)	0.44 (1.7 %)	
χ _{aa} (³⁷ Cl)	-33.74	-33.79	-33.52	-33.4548(78)
Хрр	10.24	10.31	9.79	10.165(15)
χcc	23.50	23.48	23.73	23.290(15)
χ _{ab} ^b	34.79	34.74	35.20	
χac	20.91	20.86	20.44	
Xpc	10.53	10.53	10.54	

RMS	0.21 (0.9 %)	0.24 (1.1 %)	0.34 (1.5 %)	

^a Ref. [21]. ^b The product $\chi_{ab} \chi_{ac} \chi_{bc}$ is negative.

Table 6(c). Dichlorofluoromethane, $CHF^{37}Cl_2$. Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column. Structure parameters are given in Table 6(a).

Parameter	r _{opt}	r _c	r _o -like ^a	Expt. ª
χ _{aa} (³⁷ Cl)	-32.50	-32.56	-32.27	-32.2262(20)
Хрр	9.03	9.10	8.57	8.9588(33)
Хсс	23.47	23.46	23.70	23.2674(33)
χab ^b	35.52	35.47	35.92	35.36(41)
lχacl	20.75	20.70	20.29	19.3(12)
ΙχροΙ	10.91	10.91	10.91	10.51(70)
RMS	0.20 (0.9 %)	0.24 (1.1 %)	0.34 (1.6 %)	

a Ref. [21]. b The product Xab Xac Xbc is negative. Back to Top

Table 7. Dichlorodifluoromethane, $CF_2^{35}Cl_2$. Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	r _s a	Expt. ^b
CCI	1.7512	1.7528	1.744	

CF	1.3347	1.3283	1.347	
CICCI	111.65	111.59	112.6	
FCF	107.72	107.76	106.2	
χ _{aa} (³⁵ Cl)	-43.86	-43.96	-45.02	-43.688(33)
Хрр	4.84	4.98	6.06	4.6905
Хсс	39.02	38.99	38.96	38.9975
Iχabl	54.36	54.16	54.08	52.7(46)
RMS	0.13 (0.4 %)	0.23 (0.8 %)	1.10 (3.8 %)	
RMS	0.13 (0.4 %)	0.23 (0.8 %)	1.10 (3.8 %)	
RMS χ _{xx}	0.13 (0.4 %) 40.06	0.23 (0.8 %) 39.94	1.10 (3.8 %) 40.33	38.5 °
RMS	0.13 (0.4 %) 40.06 39.02	0.23 (0.8 %) 39.94 38.99	1.10 (3.8 %) 40.33 38.96	38.5 ° 38.9975
RMS χxx χyy χzz	0.13 (0.4 %) 40.06 39.02 -79.08	0.23 (0.8 %) 39.94 38.99 -78.93	1.10 (3.8 %) 40.33 38.96 -79.29	38.5 ° 38.9975 -77.5
RMS χxx χyy χzz η	0.13 (0.4 %) 40.06 39.02 -79.08 -0.013	0.23 (0.8 %) 39.94 38.99 -78.93 -0.012	1.10 (3.8 %) 40.33 38.96 -79.29 -0.017	38.5 ° 38.9975 -77.5 -0.006
RMS χxx χyy χzz η φz,a	0.13 (0.4 %) 40.06 39.02 -79.08 -0.013 32.94	0.23 (0.8 %) 39.94 38.99 -78.93 -0.012 32.84	1.10 (3.8 %) 40.33 38.96 -79.29 -0.017 32.36	38.5 ° 38.9975 -77.5 -0.006 32.67
RMS χxx χyy χzz η φz,a φa,CCl	0.13 (0.4 %) 40.06 39.02 -79.08 -0.013 32.94 34.18	0.23 (0.8 %) 39.94 38.99 -78.93 -0.012 32.84 34.18	1.10 (3.8 %) 40.33 38.96 -79.29 -0.017 32.36 33.7	38.5 ° 38.9975 -77.5 -0.006 32.67

^a Ref. [22]. ^b Ref. [23]. ^c Calculated here from experimental data. <u>Back to Top</u>

In Tables 8 and 9 below, χ_{uu} is the component of the nqcc tensor along the threefold symmetry axis; χ_{vv} and χ_{ww} are the components along the v- and w- axes for the CI atom in the uv-plane.

Table 8. Trichloromethane (Chloroform), $CH^{35}Cl_3$. Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	r _e a	Expt. ^b
CCI	1.7587	1.7604	1.760	
СН	1.0827	1.0827	1.080	
CICCI	110.92	110.92	110.68	
HCCI	107.97	107.97	108.23	
χ _{uu} (³⁵ Cl)	29.03	29.09	28.56	28.6436(4)
χνν	-68.27	-68.36	-67.86	-67.8309(5)
χww	39.24	39.27	39.30	39.1872(5)
ΙχυνΙ	33.69	33.71	34.38	34.137(32)
RMS	0.34 (0.7 %)	0.40 (0.9 %)	0.08 (0.2 %)	
χ××	39.56	39.61	39.56	39.501(18)
Хуу	39.24	39.27	39.30	39.1872(5)
χzz	-78.80	-78.88	-78.86	-78.688(18)
η	-0.0041	-0.0043	-0.0033	-0.0040(2)
φz,u	72.65	72.66	72.25	72.357(13)
φu,CCl	72.03	72.03	71.77	71.77(2) ^c
φz,CCl	0.38	0.33	0.58	0.59(2) °

^a Ref. [2]. ^b Ref. [24]. ^c r_e structure. Back to Top

Table 9. Trichlorofluoromethane, $CF^{35}Cl_3$. Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	avg. r _o a	Expt. ^b
CCI	1.7569	1.7585	1.757	
CF	1.3442	1.3381	1.346	
CICCI	110.46	110.46	110.35	
FCCI	108.46	108.46		
χ _{uu} (³⁵ Cl)	29.04	29.18	28.77	28.98(4)
χνν	-70.33	-70.41	-70.12	-70.28 °
χww	41.29	41.23	41.34	41.30 °
ΙχυνΙ	34.10	33.96	34.48	
RMS	0.04 (0.1 %)	0.14 (0.3 %)	0.15 (0.3 %)	
χ××	39.62	39.66	39.61	
Хуу	41.29	41.23	41.34	
χzz	-80.91	-80.89	-80.95	
η	0.021	0.019	0.021	
φz,u	72.77	72.85	72.55	
φu,CCl	71.54	71.54	71.42	
φz,CCl	1.23	1.31	1.13	

^a Average of two quite different r_o structures [25, 26]. See Ref. [1]. ^b Ref. [27].

° Calculated here from χ_{uu} and $\eta_Q = (\chi_{vv} - \chi_{ww})/\chi_{uu} = -3.85(20)$ MHz [27]. Back to Top

Table 10. Carbon Tetrachloride, CCl_4 . Structure parameters (Å and degrees). Chlorine nuclear quadrupole coupling constants (MHz). Coupling constants in a given column were calculated on the molecular structure given in the same column.

Parameter	r _{opt}	r _c	
CCI	1.7620	1.7636	
χ _{zz} (³⁵ Cl)	-83.27	-83.37	
χ _{zz} (³⁷ Cl)	-65.63	-65.70	

Back to Top

Discussion

Comparison of r_c and r_e molecular structure parameters of CH₃Cl and CHCl₃ are made in Tables 1 and 8, and comparison of r_c and r_m^ρ parameters of CH₂Cl₂ in Table 5. For these, the average CCl difference is 0.0009 Å while the largest difference is 0.0014 Å in CH₃Cl; the average CH difference is 0.0027 Å, the largest difference, 0.0032 Å also in CH₃Cl. For the angles, the average difference is 0.17°; the largest difference is 0.26° for HCCl in CHCl₃. The r_c structures of these molecules approximate the equilibrium structures. This, along with the results of calculations of the nqcc's, leads us to believe that the r_c structures of the other molecules in this series also approximate equilibrium structures.

For CH₂Cl₂, in addition to the r_m^{ρ} structure, two r_e structures have been reported [28, 29]. These three structures are somewhat different. Whereas the r_c structure is in better agreement with the r_m^{ρ} structure, nqcc's calculated on the r_e structures are in better agreement with the experimental nqcc's (<u>Visit this link</u>).

Excellent agreement between calculated and experimental coupling constants is obtained on both r_c and r_{opt} structures. On the r_c structures, the average RMS difference between calculated and experimental 35 Cl diagonal inertia axes nqcc's is 0.23 MHz; the largest differences are 0.37 and 0.40 MHz for CH₂Cl₂ and CHCl₃ respectively. On the r_{opt} structures, this average RMS difference is also 0.22 MHz; the largest differences are 0.34 MHz for CH₂Cl₂ and CHCl₃ respectively. On the structures, this average RMS difference is also 0.22 MHz; the largest differences are 0.32 and 0.34 MHz for CH₂Cl₂ and CHCl₃ respectively. These all lie well within the estimated uncertainty in the calculated nqcc's of 0.60 MHz. The results are as good on the r_{opt} structures as on the r_c structures, for which the bond lengths are corrected.

In CHCl₃, it is perhaps instructive to note the differences between nqcc's calculated on the r_c and r_e structures. Let us note first that the calculated values of χ_{ww} , χ_{xx} , χ_{yy} , and χ_{zz} are essentially the same for both structures, and in good agreement with the experimental values (Table 8). As the CCI bond lengths are nearly the same in both structures, the relatively large differences between χ_{uu} and χ_{vv} calculated on r_c compared with those calculated on r_e - respectively, 0.53 and 0.50 MHz - are due to the 0.25° angular difference in the two structures between CCI and the u- and v- axes.

References

[1] Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://homepage.mac.com/wcbailey/nqcc/

[2] J. M. Colmont, D. Priem, P. Dréan, J. Demaison, and J. E. Boggs, J. Mol. Spectrosc. 191, 158 (1998).

[3] J. Demaison, G. Wlodarczak, H. Rück, K. H. Wiedenmann, and H. D. Rudolph, J. Mol. Struct. 376, 399 (1996).

[4] I. Merke, L. Poteau, G. Wlodarczak, A. Bouddou, and J. Demaison, J. Mol. Spectrosc. 177, 232 (1996).

[5] R. M. Villamañan, W. D. Chen, G. Wlodarczak, J. Demaison, A. G. Lesarri, J. C. López, and J. L. Alonso, J. Mol. Spectrosc. 171, 223 (1995).

[6] J. Demaison, J. Cosléou, R. Bocquet, and A. G. Lesarri, J. Mol. Spectrosc. 167, 400 (1994).

[7] J. Demaison and G. Wlodarczak, Struct. Chem. 5, 57 (1994).

[8] M. LeGuennec, J. Demaison, G. Wlodarczak, and C. J. Marsden, J. Mol. Spectrosc. 160, 471 (1993).

[9] M. LeGuennec, G. Wlodarczak, J. Burie, and J. Demaison, J. Mol. Spectrosc. 154, 305 (1992).

[10] Gaussian 03, Revision C.02, M. J. Frisch, et al. Gaussian Inc., Wallington CT, 2004.

[11] P. Pyykkö, and J. Li, 1992 Nucler Quadrupole Moments, Report HUKI 1-92, ISSN 0784-0365.

[12] M. Imachi, T. Tanaka, and E. Hirota, J. Mol. Spectrosc. 63, 256 (1976).

[13] G. Wlodarczak, D. Boucher, R. Bocquet, and J. Demaison, J. Mol. Spectrosc. 88, 378, (1981).

[14] S. Blanco, A. Lesarri, J. C. López, J. L. Alonso, and A. Guarnier, J. Mol. Spectrosc. 174, 397 (1995).

[15] D. T. Cramb, Y. Bos, H. M. Jemson, M. C. L. Gerry, and C. J. Marsden, J. Mol. Struct. 190, 387 (1988).

[16] S. Blanco, A. Lesarri, J. C. López, J. L. Alonso, and A. Guarnieri, Z. Naturforsch. 51a, 129 (1966).

[17] V. Typke, M. Dakkouri, H. Oberhammer, J. Mol. Struct. 44, 85 (1978).

[18] J. H. Carpenter, J. D. Muse, C. E. Small, and J. G. Smith, J. Mol. Spectrosc. 93, 286 (1982).

[19] R. J. Berry and M. D. Harmony, Struct. Chem. 1, 49 (1989).

[20] Z. Kisiel, J. Kosarzewski, and L. Pszczółkowski, Acta Physica Polonica A 92, 507 (1997).

[21] J. C. López, A. de Luis, S. Blanco, A. Lessari, and J. L. Alonso, J. Mol. Struct, 612, 287 (2002); A. de Luis, J. C. López, A. Guarnieri, and J. L. Alonso, J. Mol. Struct. 413-414, 249 (1997).

[22] R. W. Davis, M. C. L. Gerry, and C. J. Marsden, J. Mol. Spectrosc. 101, 167 (1983).

[23] O. I. Baskakov, S. F. Dyubko, A. A. Katrich, V. V. Ilyushin, and E. A. Alekseev, J. Mol. Spectrosc. 199, 26 (2000).

[24] E. Białkowska-Jaworska, Z. Kisiel, and L. Pszczółkowski, J. Mol. Spectrosc. 238, 72 (2006).

[25] J. H. N. Loubser, J. Chem. Phys. 36, 2898 (1961).

[26] M. W. Long, Q. Williams, and T. L. Weatherly, J. Chem. Phys. 33, 508 (1960).

[27] J. H. Carpenter, P. J. Seo. and D. H. Whiffen, J. Mol. Spectrosc. 123, 187 (1987).

[28] J. L. Duncan, J. Mol. Struct. 158, 169 (1987).

[29] A. W. Davis, A. G. Robiette, and M. C. L. Gerry, J. Mol. Spectrosc. 85, 399 (1981).