C6H11Cl



 









Chlorine


Nuclear Quadrupole Coupling Constants


in equatorial Cyclohexyl Chloride


 







 
 
Calculation of the chlorine nqcc's in equatorial cyclohexyl chloride was made on a molecular structure derived ab initio, as described below.  These are compared in Table 1 with the experimental nqcc's of Caminati, et al. [1].  Structure parameters are given in Table 2, rotational constants in Table 3.
 
In Table 1, RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation for the B1LYP/TZV(3df,2p) model for calculation of the chlorine nqcc's. 
 
Subscripts a,b,c refer to the principal axes of the inertia tensor; x,y,z to the principal axes of the nqcc tensor.  The nqcc y-axis is chosen coincident with the inertia b-axis, these are perpendicular to the molecular symmetry plane.  Ø (degrees) is the angle between its subscripted parameters.  ETA = (Xxx - Xyy)/Xzz.

 







 
 
   







Table 1. Chlorine nqcc's in cyclohexyl chloride, equatorial (MHz).
   










Calc.
Expt. [1]
   






35Cl Xaa - 62.26 - 61.4(2)
Xbb 34.42 30.3(12)
Xcc 27.84 31.1
|Xac| 24.50
 
RMS 3.1 (7.5 %)
RSD 0.49 (1.1 %)
 
Xxx 34.07
Xyy 34.42
Xzz - 68.49
ETA 0.005
Øz,a 14.27
Øa,CCl 13.67
Øz,CCl   0.60
   
37Cl Xaa - 49.09 - 43.8(8)
Xbb 27.12 27.5(19)
Xcc 21.97 16.3
|Xac| 19.26
 
RMS 4.5 (15 %)
RSD 0.44 (1.1 %)
 

 
 
Molecular Structure
The molecular structure was optimized at the MP2/6-311G(d,p) level of theory assuming Cs symmetry.  The optimized CC bond lengths were then corrected using the equation obtained from linear regression analysis of the data given in Table IX of Ref. [2].  For CCl, the structure was optimized at the MP2/6-311+G(2d,p) level and the bond length corrected by linear regression analysis of the data given in Table 4 of Ref. [3].  The CH bond lengths were corrected using r = 1.001 ropt, where ropt is obtained by MP2/6-31G(d,p) optimization [4].  Interatomic angles used in the calculation are those given by MP2/6-311+G(2d,p) optimization.
 
Table 2.  Cyclohexyl Chloride, equatorial.  Heavy atom structure parameters, ropt (Å and degrees).  The complete structure is given here in Z-Matrix format.
 
Atomic numbering C(6)Cl 1.7944
C(6)C(5) 1.5151

C(5)C(4) 1.5254
C(4)C(3) 1.5232
CCC,Cl * 127.70
C(1)C(6)C(5) 111.76
C(6)C(5)C(4) 109.92
C(5)C(4)C(3) 111.05
C(4)C(3)C(2) 110.69
* Angle that C(6)Cl makes with the C(1)C(6)C(5) plane.
On the rs structure of Ref. [1] and the ro structure of Ref. [5], the CCl bond lengths are respectively 1.804(4) and 1.7997(2) Å.

 
 
Table 3.  Cyclohexyl Chloride, equatorial.  Rotational Constants (MHz).  35Cl species.
 
Calc. ropt  Expt. [1]
A  4352.3 4292.09(9)
B  1411.0 1396.982(5)
C  1139.8 1127.346(4)
 
 

[1] W.Caminati, F.Scappini, and D.Damiani, J.Mol.Spectrosc. 108, 287(1984).
[2] J.Demaison, J.Cosléou, R.Bocquet, and A.G.Lesarri, J.Mol.Spectrosc. 167,400(1994).
[3] I.Merke, L.Poteau, G.Wlodarczak, A.Bouddou, and J.Demaison, J.Mol.Spectrosc. 177,232(1996).
[4] J.Demaison and G.Wlodarczak, Structural Chem. 5,57(1994).
[5] E.Białkowska-Jaworska, M.Jaworski, and Z.Kisiel, J.Mol.Struct. 350,247(1995).

 







D.Damiani and L.Ferretti, Chem.Phys.Lett. 21,592(1973).  Xaa,  Xbb, and Xcc = -61.4(2), 30.5(7), and 30.9(9) MHz, respectively.
 

 








Cyclohexyl Chloride, axial
 

 








Table of Contents




Molecules/Chlorine



 

 













Clcychex_eq.html






Last Modified 4 May 2006