NH2CH2-C(=O)NH2


















 





 





Nitrogen


Nuclear Quadrupole Coupling Constants


in Glycinamide



 








 








Nitrogen nuclear quadrupole coiupling constants in glycinamide were determined by Alonso et al. [1].


 









Calculation of the 14N nqcc's was made here on a molecular structure given by HF/aug-cc-pVTZ optimization.  Calculated nqcc's are compared with the experimental values in Tables 1 - 2.  Structure parameters are given in Table 3, rotational constants in Table 4.












In Tables 1 and 2, subscripts a,b,c refer to the principal axes of the inertia tensor; x,y,z to the principal axes of the nqcc tensor.  ETA = (Xxx - Xyy)/Xzz.  Ř (degrees) is the angle between its subscripted parameters.  RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation of the B3PW91/6-311+G(df,pd) model for calculation of nitrogen efg's/nqcc's.












 









   







Table 1.  Nitrogen (amine) nqcc's in glycinamide (MHz).  Calculation was made on HF/aug-cc-pVTZ optimized molecular structure.

   










Calc

Expt [1]
   







14N Xaa
2.272

2.1153(57)



Xbb -
3.107
-
3.1128(56)



Xcc
0.835

0.9976(56)


Xab
1.630





Xac
0.402





Xbc -
2.522













RMS
0.130 (6.3 %)





RSD
0.030 (1.3 %)




 







Xxx
2.815




Xyy
1.908




Xzz -
4.723





ETA
-
0.192













 



















   







Table 2.  Nitrogen (amide) nqcc's in glycinamide (MHz).  Calculation was made on HF/aug-cc-pVTZ optimized molecular structure.

   










Calc

Expt [1]
   







14N Xaa
1.668

1.5547(56)



Xbb
1.916

1.9633(70)



Xcc -
3.584
-
3.5179(70)


Xab -
0.286





Xac
0.477





Xbc
0.379













RMS
0.080 (3.4 %)





RSD
0.030 (1.3 %)




 







Xxx
1.552





Xyy
2.104





Xzz -
3.656





ETA

0.151













 









 









 


Table 3.  Glycinamide: HF/aug-cc-pVTZ optimized structure parameters (Ĺ and degrees).
 





 

 O             
 C  1  B1
 C  2  B2   1  A1
 N  2  B3   1  A2  3  D1  0
 H  4  B4   2  A3  1  D2  0
 H  4  B5   2  A4  1  D3  0
 H  3  B6   2  A5  1  D4  0
 H  3  B7   2  A6  1  D5  0
 N  3  B8   2  A7  1  D6  0
 H  9  B9   3  A8  2  D7  0
 H  9  B10 3  A9  2  D8  0







 B1=1.19597182
 B2=1.52123295
 B3=1.34343369
 B4=0.99046631
 B5=0.98925622
 B6=1.08307351
 B7=1.08343066
 B8=1.45100227
 B9=0.99608691
 B10=0.99762676
 A1=120.35816039
 A2=123.52369332
 A3=118.65926840
 A4=120.23374146
 A5=105.55599643
 A6=106.37060554
 A7=114.08793067
 A8=111.40727397
 A9=111.74559300
 D1=-178.90819935
 D2=3.56324852
 D3=176.04137501
 D4=-74.95123434
 D5=38.41576580
 D6=165.52631204
 D7=157.08068570
 D8=-82.34789412




 








 








 


Table 4.  Glycinamide: Rotational Constants (MHz), ropt = HF/aug-cc-pVTZ
 




 ropt     Expt [1]





A
9776.
9631.6898(23)

B
4040.
3986.7822(11)

C
2972.
2925.57833(82)


 








 








[1]  E.R.Alonso, L.Kolesniková, Z.Kisiel, J.C.Guillemin, J.L.Alonso, Abstract RF09, 72nd ISMS, Champaign-Urbana, Illinois, 2017.


 








"Glycinamide, a Glycine Precursor, Caught in the Gas Phase: A Laser-ablation Jet-cooled Rotational Study" E. R. Alonso, L. Kolesniková, E. Białkowska-Jaworska, Z. Kisiel, I. León, J.-C. Guillemin, and J. L. Alonso,The Astrophysical Journal, 2018, 861:70 (7pp).












 








Acetamide
Glycolamide
Methylamine



 









 









Table of Contents




Molecules/Nitrogen




 








 













Glycinamide.html






Last Modified 1 Sept 2018