|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HSiBr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bromine |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
|
in Monobromosilylene |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calculation of the Br nqcc tensor in monobromosilylene was made here on the ro structure of Harjanto et al. [1], and on the estimated rez
structure of Hostutler et al. [2]. These are compared in Tables 1
and 2 with the experimental nqcc's of Tackett et al. [3]. |
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 and 2, subscripts
a,b,c refer to the principal axes of the inertia tensor.
Subscripts x,y,z refer to the principal axes of the nqcc tensor. Ø
(degrees) is the angle between its subscripted parameters. ETA = (Xxx - Xyy)/Xzz. |
|
|
|
|
|
|
|
|
|
|
|
|
RMS is the root measn square
difference between calculated and experimental diagonal nqcc. RSD
is the residual standard deviation of the calibration of the
B1LYP/TZV(3df,3p) model for calculation of the nqcc's, which may be
taken as an estimate of the uncertainty in the calculated nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. 79Br nqcc's in HSiBr (MHz). Calculation was made on the ro structure of Harjanto et al. [1], and on the estimated rez structure of Hostutler et al. [2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. [1]
|
|
Calc. [2] |
|
Expt. [3] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
224.46 |
|
223.57 |
|
225.018(2) |
|
|
Xbb - Xcc |
- |
264.49 |
- |
266.86 |
- |
252(11) |
|
|
Xbb |
- |
244.48 |
- |
245.21 |
- |
238.5(55) |
|
|
Xcc |
|
20.01 |
|
21.64 |
|
13.5(55) |
|
|
|Xab| |
|
10.85 |
|
12.95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
5.1 (3.2 %) |
|
6.2 (3.9 %) |
|
|
|
|
RSD |
|
1.58 (0.39 %) |
|
1.58 (0.39 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
20.01 |
|
21.64 |
|
|
|
|
Xyy |
- |
244.73 |
- |
245.57 |
|
|
|
|
Xzz |
|
224.71 |
|
223.92 |
|
|
|
|
ETA |
|
1.178 |
|
1.193 |
|
|
|
|
Øz,a |
|
1.32 |
|
1.58 |
|
|
|
|
Øa,SiBr |
|
1.45 |
|
1.42 |
|
|
|
|
Øz,SiBr |
|
0.12 |
|
0.16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. 81Br nqcc's in HSiBr (MHz). Calculation was made on the ro structure of Harjanto et al. [1], and on the estimated rez structure of Hostutler et al. [2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. [1]
|
|
Calc. [2] |
|
Expt. [3] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
187.53 |
|
186.78 |
|
187.975(2) |
|
|
Xbb - Xcc |
- |
220.97 |
- |
222.95 |
- |
186(15) |
|
|
Xbb |
- |
204.25 |
- |
204.87 |
- |
187.0(75) |
|
|
Xcc |
|
16.72 |
|
18.08 |
|
-1.0(75) |
|
|
|Xab| |
|
9.06 |
|
10.82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
14.3 (11.4 %)
|
|
15.1 (12.0 %) |
|
|
|
|
RSD |
|
1.38 (0.40 %) |
|
1.38 (0.40 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
16.72 |
|
18.08 |
|
|
|
|
Xyy |
- |
204.46 |
- |
205.17 |
|
|
|
|
Xzz |
|
187.74 |
|
187.08 |
|
|
|
|
ETA |
|
1.178 |
|
1.193 |
|
|
|
|
Øz,a |
|
1.32 |
|
1.58 |
|
|
|
|
Øa,SiBr |
|
1.45 |
|
1.42 |
|
|
|
|
Øz,SiBr |
|
0.12 |
|
0.16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. HSiBr. Molecular structure parameters, ro [1] and rez [2] (Å
and degrees). |
|
|
|
|
|
|
ro |
rez |
|
|
|
|
|
HSi |
1.518(1) |
1.503(9) |
|
SiBr |
2.237(1) |
2.235(1) |
|
HSiBr |
93.4(3) |
92.8(4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] H.Harjanto, W.W.Harper, and D.J.Clouthier, J.Chem.Phys. 105,10189(1996). |
|
|
[2] D.A.Hostutler, N.Ndiege, D.J.Clouthier, and S.W.Pauls, J.Chem.Phys. 115,5485(2001). |
|
|
[3] B.S.Tackett, D.J.Clouthier, J.N.Landry, and W.Jäger, J.Chem.Phys. 122,214314(2005). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SiH3Br |
SiF3Br |
SiH3Cl
|
|
|
|
SiCl2 |
SiH2Cl2 |
HCBr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Bromine |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HSiBr.html |
|
|
|
|
|
|
Last
Modified 22 Nov 2007 |
|
|
|
|
|
|
|
|
|
|