C6H5CN




 






 









Nitrogen


Nuclear Quadrupole Coupling Constants


in Benzonitrile


 








 








 


 





Calculation was made here of the nitrogen nqcc's in benzonitrile on the substitution molecular structure of Casado et al. [1], and on a structure given by B3P86/6-31G(3d,3p) optimization.  These are compared in Tables 1 and 2 with the experimental nqcc's of Wohlfart et al. [2]. Structure parameters are compared in Table 3.  Substitution structure parameters of Bak et al. [3] are also shown for in Table 3.

 








In Tables 1 and 2,  RMS is the root mean square difference between calculated and experimental nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation of the B3PW91/6-311+G(df,pd) model for calculation of nitrogen nqcc's.

 








 








   







Table 1. Nitrogen nqcc's in C6H5CN (MHz).  Calculation was made on the substitution structure of Casado et al. [1].
   










Calc.
Expt. [2]
   







14N Xaa - 4.236 - 4.23738(36)


Xbb
2.295
2.2886(11)


Xcc
1.941
1.9488(11)


ETA * - 0.084



 







RMS
0.006 (0.2 %)




RSD
0.030 (1.3 %)



 







 








* ETA = (Xbb - Xcc)/Xaa = (Xxx - Xyy)/Xzz.

 









 








   







Table 2. Nitrogen nqcc's in C6H5CN (MHz).  Calculation was made on the B3P86/6-31G(3d,3p) structure.
   










Calc.
Expt. [2]
   







14N Xaa - 4.241 - 4.23738(36)


Xbb
2.307
2.2886(11)


Xcc
1.934
1.9488(11)


ETA * - 0.088



 







RMS
0.014 (0.5 %)




RSD
0.030 (1.3 %)



 







 








* ETA = (Xbb - Xcc)/Xaa = (Xxx - Xyy)/Xzz.

 







 
 



Table 3. Molecular structure parameters (Ĺ and degrees).
 





 rs [1]  rs [3]   ropt






C(1)C(2) 1.3876 1.391 1.3988

C(2)C(3) 1.3956 1.393 1.3871

C(3)C(4) 1.3974 1.400 1.3909

C(1)C 1.4507 1.455 1.4290

CN 1.1581 1.159 1.1580

C(2)H(2) 1.0803 1.069 1.0839

C(3)H(3) 1.0822 1.082 1.0844

C(4)H(4) 1.0796 1.081 1.0849

C(6)C(1)C(2) 121.82 122.5 120.21

C(1)C(2)C(3) 119.00 118.45 119.61

C(2)C(3)C(4) 120.06 120.3 120.18

C(3)C(4)C(5) 120.05 120.0 120.21

C(1)C(2)H(2) 120.36 121.8 119.54

C(2)C(3)H(3) 120.01 119.9 119.71



 








 








[1] J.Casado, L.Nygaard, and G.O.Sřrensen, J.Mol.Struct. 8,211(1971).

[2] K.Wohlfart, M.Schnell, J.-U.Grabow, and J.Küpper, J.Mol.Spectrosc. 247,119(2008).

[3] B.Bak, D.Christensen, W.B.Dixon, L.Hansen-Nygaard, and J.Rastrup-Andersen, J.Chem.Phys. 37,2027(1962).

 








 









M.Kamaee, M.Sun, H.Luong, and J. van Wijngaarden, J.Phys.Chem. A 119(41),10279(2015).:  1.5Xaa  = -6.35579(76) and 0.25(Xbb - Xcc) =  0.08490(31) MHz.

"Accurate Determination of the Deformation of the Benzene Ring upon Substitution:  Equilibrium Structures of Benzonitrile and Phenylacetylene"  H.D.Rudolph, J.Demaison, and A.G.Császár, J.Phys.Chem. A 117,12969(2013).


U.Dahmen, W.Stahl, and H.Dreizler, Ber.Bunsenges.Phys.Chem. 98,970(1994): Xaa, Xbb, Xcc =  -4.2391(18), 2.2893, 1.9498 MHz.

O.Böttcher and D.H.Sutter, Z.Naturforsch. 43a,47(1988).

E.Fliege, G.Bestmann, R.Schwarz, and H.Dreizler, Z.Naturforsch. 36a,1124(1981): Xaa, Xbb, Xcc =  -4.187(7), 2.301(8), 1.886(8) MHz.

K.Vormann, U.Andresen, N.Heineking, and H.Dreizler, Z.Naturforsch. 43a,283(1988): Xaa, Xbb, Xcc =  -4.244(4), 2.290(5), 1.954(5) MHz.

 









 








 HCN HCCCN CH2CHCN CH3CH2CN

o-Tolunitrile m-Tolunitrile p-Tolunitrile

o-Fluorobenzonitrile m-Fluorobenzonitrile p-Fluorobenzonitrile

2-Cyanopyridine 3-Cyanopyridine 4-Cyanopyridine

 








 








Table of Contents




Molecules/Nitrogen




 








 













C6H5CN.html






Last Modified 13 Nov 2007