C6H5D



 

 









Deuterium


Nuclear Quadrupole Coupling Constants


in Benzene-d1


 







 

 


 




Deuterium nqcc's in monodeuterated benzene were measured by Jans-Bürli, M.Oldani, and A.Bauder [1].
 
Langseth and Stoicheff [2] by rotational Raman spectroscopy determined a benzene structure in which CC = 1.3973 Å and CH = 1.084 Å.  Oldani and Bauder [3] by MW spectroscopic investigation of the monodeuterated molecule determined CC =1.395 Å and CH = 1.082 Å.  More recently, Caminati et al. [4] determined from the rotational constants of several isotopomers a structure in which CC =  1.3974 Å and CH = 1.0788 Å.  Optimization with the B3P86/6-31G(3d,3p) model yields CC = 1.3909 and CH = 1.0851 Å.
 
We investigate here the sensitivity of the deuterium nqcc's to the molecular structure.  First, in Table 1, comparison is made between the experimental nqcc's and those calculated on the B3P86/6-31G(3d,3p) molecular structure.  Then, with CH fixed at the optimization value, the nqcc's are calculated as functions of CC bond length.  These are shown in Table 2.  It is seen that the calculated nqcc's are not sensitive to the CC bond length.  Now, CC is held fixed at the optimization value, while CH is varied.  These calculated nqcc's are shown in Table 3.
In Table 4, nqcc's calculated on B3P86/6-31G(3d,3p) structures of benzene, fluorobenzene, and phenylacetylene are compared.
 
In Tables 1 - 3, RMS is the root mean square difference between calculated and experimental inertia axes nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation for the B3LYP/6-31G(df,3p) model for calculation of the nqcc's. 
 

 








   







Table 1.  Deuterium nqcc's in Benzene-d1 (kHz).  Calculation was made on the B3P86/6-31G(3d,3p) structure.  Note: Experimental Xbb and Xcc are here interchanged [5].
   










Calc.
Expt. [1]
   
 





2H Xaa 189.0 186.1(18)
Xbb - 89.0 - 88.9(23)
Xcc - 99.9 - 97.2(23)
   
  RMS 2.3 (1.8 %)
RSD 1.1 (0.9 %)
 


 







 
   






Table 2.  Dependence of the deuterium nqcc's (kHz) in benzene on CC bond length.  CH = 1.0851 Å.
   






CC (Å)   Xzz   Xyy   Xxx RMS
   
1.3859 189.0 -89.1   -99.8  2.2
1.3909 189.0 -89.1   -99.9  2.3
1.3959 189.0 -89.2   -99.9  2.3
1.4009 189.1 -89.2   -99.9  2.3
1.4059 189.1 -89.2 -100.0  2.4
 
 
 
   






Table 3.  Dependence of the deuterium nqcc's (kHz) in benzene on CH bond length.  CC = 1.3909 Å.
   






CH (Å)   Xzz   Xyy   Xxx RMS
   
1.079 196.0 -92.6 -103.4  7.1
1.081 193.7 -91.5 -102.2  5.5
1.083 191.4 -90.3 -101.1  3.9
1.085 189.1 -89.2   -99.9  2.3
1.087 186.9 -88.1   -98.8  1.1
1.089 184.6 -87.0   -97.7  1.4
1.091 182.4 -85.9   -96.6  2.8
 
Expt. [1] 186.1(18) -88.9(23)   -97.2(23)
 
 
 
   






Table 4.  Principal values of the deuterium nqcc tensor calculated on the B3P86/6-31G(3d,3p) optimized structures of phenylacetylene (PhA), fluorobenzene (FB), and benzene.  (kHz and degrees)
   






  Xzz   Xyy   Xxx ETA Øz,CD
   
C6H5D 189.0   -99.9  -89.1 0.057   0
 
PhA D(4) 188.9   -99.7  -89.1 0.056   0
FB D(4) 190.0 -101.1  -88.8 0.065   0
 
PhA D(3) 188.8   -99.7  -89.0 0.057 0.01
FB D(3) 188.7   -99.6  -89.2 0.055 0.03
 
PhA D(2) 188.3   -99.8  -88.6 0.059 0.20
FB D(2) 190.0 -100.8  -89.2 0.061 0.29
 
 
 

[1] S.Jans-Bürli, M.Oldani, and A.Bauder, Mol.Phys. 68,1111(1989).
[2] A.Langseth and B.P.Stoicheff, Can.J.Phys. 34,350(1956). 
[3] M.Oldani and A.Bauder, Chem.Phys.Lett. 108,7(1984).
[4] W.Caminati, S.DiBernardo, L.Schäfer, S.Q.Kulp-Newton, and K.Siam, J.Mol.Struct. 240,263(1990).
[5] W.C.Bailey, J.Mol.Spectrosc. 190,318(1998).
 
"Deuterium quadrupole coupling in benzene: librational corrections ..."  P.Pyykkö and F.Elmi, PCCP 10,3867(2008).

 








 








Fluorobenzene-d1 Phenylacetylene-d1 Pyridine-4D
 

 








Table of Contents



Molecules/Deuterium
 

 













C6H5D.html






Last Modified 2 June 2003