|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cl2HC-CH3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chlorine |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
in 1,1-Dichloroethane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calculation of the chlorine nqcc's in 1,1-dichloroethane
was made on the substitution molecular structure of Sugie et al. [1], and on a structure given by MP2/aug-cc-pVTZ(G03) optimization with empirical correction for the C-C and CCl bond lengths (~ re).
These are compared with the experimental nqcc's of de Luis et al.
[2] in Tables 1 - 3. Structure parameters are given in
Table 4. |
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 - 3,
subscripts a,b,c refer to the
principal axes of the inertia tensor; x,y,z to the principal axes
of the nqcc tensor. Øz,CCl (degrees) is the angle between the principal z-axis of the nqcc tensor and the CCl bond axis. ETA = (Xxx - Xyy)/Xzz. |
|
|
RMS is the root mean
square difference between calculated and experimental diagonal nqcc's.
RSD is the calibration residual standard deviation of
the B1LYP/TZV(3df,2p) model for calculation of the chlorine nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. Chlorine
nqcc's in 35Cl2HC-CH3 (MHz). Calculation was made on the rs structure of Sugie et al. [1], and on the ~ re structure. |
|
|
|
|
|
|
|
|
|
|
|
35Cl
|
|
Calc/ ~ re |
|
Calc/ rs |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
39.62 |
- |
40.01 |
- |
39.0405(22) |
|
Xbb |
|
11.06 |
|
11.25 |
|
10.6742(30) |
|
Xcc |
|
28.56 |
|
28.76 |
|
28.3663(30) |
|
Xab* |
+/- |
44.22 |
+/- |
44.42 |
+/- |
44.22(36) |
|
|
Xac* |
+/- |
25.22 |
+/- |
25.32 |
+/- |
24.08(74) |
|
|
Xbc* |
- |
16.13 |
- |
16.04 |
- |
16.27(29) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.42 (1.6 %) |
|
0.69 (2.6 %) |
|
|
|
|
RSD |
|
0.49 (1.1 %) |
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
35.70 |
|
35.96 |
|
34.79(93) |
|
|
Xyy |
|
38.28 |
|
38.40 |
|
38.41(57) |
|
|
Xzz |
- |
73.98 |
- |
74.36 |
- |
73.19(71) |
|
|
ETA |
|
0.035 |
|
0.033 |
|
0.049(21) |
|
|
Øz,CCl |
|
1.08 |
|
1.11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* The algebraic signs of the
off-diagonal nqcc's depend on the orientation of the molecule with
respect to positive/negative sense of the a,b,c axes. Here, Xbc is negative, while for one Cl, Xab and Xac are both positive, and for the other, both negative. The product XabXacXbc is negative, independent of positive/negative sense of a,b,c axes. This note applies also to Tables 2 and 3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Chlorine
nqcc's in 35Cl37ClHC-CH3 (MHz). Calculation was made on the rs structure of Sugie et al. [1], and on the ~ re structure. |
|
|
|
|
|
|
|
|
|
|
|
35Cl |
|
Calc/ ~ re |
|
Calc/ rs |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
38.10 |
- |
38.47 |
- |
37.4807(67) |
|
Xbb |
|
9.57 |
|
9.74 |
|
8.854(10) |
|
Xcc |
|
28.53 |
|
28.73 |
|
28.626(10) |
|
Xab* |
+/- |
45.04 |
+/- |
45.25 |
+/- |
43.95(68) |
|
|
Xac* |
+/- |
24.99 |
+/- |
25.08 |
+/- |
23.30(89) |
|
|
Xbc* |
- |
16.58 |
- |
16.50 |
- |
16.26(65) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.55 (2.2 %) |
|
0.77 (3.1 %) |
|
|
|
|
RSD |
|
0.49 (1.1 %) |
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
37Cl |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
32.41 |
- |
32.72 |
- |
31.9600(73) |
|
|
Xbb |
|
9.83 |
|
9.99 |
|
9.540(22) |
|
|
Xcc |
|
22.58 |
|
22.73 |
|
22.419(22) |
|
|
Xab |
-/+ |
34.21 |
-/+ |
34.35 |
-/+ |
34.81(70) |
|
|
Xac |
-/+ |
19.99 |
-/+ |
20.07 |
-/+ |
19.95(88) |
|
|
Xbc |
- |
12.34 |
- |
12.27 |
- |
12.46(68) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.32 (1.5 %) |
|
0.54 (2.5 %) |
|
|
|
|
RSD |
|
0.44 (1.1 %) |
|
0.44 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* See the footnote with Table 1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. 37Cl
nqcc's in 37Cl2HC-CH3 (MHz). Calculation was made on the rs structure of Sugie et al. [1], and on the ~ re structure. |
|
|
|
|
|
|
|
|
|
|
|
37Cl
|
|
Calc/ ~ re |
|
Calc/ rs |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
31.23 |
- |
31.53 |
- |
30.7594(19) |
|
Xbb |
|
8.67 |
|
8.82 |
|
8.3663(29) |
|
Xcc |
|
22.55 |
|
22.70 |
|
22.3931(29) |
|
Xab* |
+/- |
34.89 |
+/- |
35.04 |
+/- |
33.78(45) |
|
|
Xac* |
+/- |
19.82 |
+/- |
19.90 |
+/- |
18.59(77) |
|
|
Xbc* |
- |
12.69 |
- |
12.62 |
- |
12.83(22) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.38 (1.6 %) |
|
0.54 (2.7 %) |
|
|
|
|
RSD |
|
0.44 (1.1 %) |
0.44 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
28.13 |
|
28.34 |
|
26.50(72) |
|
|
Xyy |
|
30.17 |
|
30.26 |
|
30.15(60) |
|
|
Xzz |
- |
58.30 |
- |
58.61 |
- |
56.65(77) |
|
|
ETA |
|
0.035 |
|
0.033 |
|
0.064(25) |
|
|
Øz,CCl |
|
1.08 |
|
1.11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* See the footnote with Table 1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. 1,1-Dichloroethane. Structure parameters, ~ re and rs [1] (Å
and degrees). Complete structures, including dihedral angles, are given here in Z-matrix format. |
|
|
|
|
|
CCl |
1.7766 |
1.775(1) |
CC |
1.5058 |
1.517(3) |
CCCl |
110.51 |
110.78(16) |
ClCCl |
110.11 |
110.45(12) |
CH(6) |
1.0846 |
1.085(2) |
CH(5) |
1.0877 |
1.100(5) |
CH(3,4) |
1.0887 |
1.098(27) |
CCH(6) |
112.88 |
109.16(38) |
CCH(5) |
109.85 |
109.16(38) |
|
CCH(3,4) |
109.47 |
109.0(29) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] M.Sugie, M.Kato, C.Matsumura, and H.Takeo, J.Mol.Struct. 413-414,487(1997). |
|
|
[2] A. de Luis, J.C.López, and J.L.Alonso, Chem.Phys. 248,247(1999). |
|
|
|
|
|
|
|
|
|
|
|
|
W.H.Flygare, J.Mol.Spectrosc. 14,145(1964). 35Cl2HC-CH3, Xaa = -39.006(5), Xbb = 10.758(10), and Xcc = 28.248(5) MHz. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ClH2C-CH3 |
ClH2C-CHF2 |
ClF2C-CH3 |
ClF2C-CHF2 |
|
|
ClH2C-CH2F |
ClH2C-CF3 |
ClF2C-CH2F |
ClF2C-CF3 |
|
|
ClFHC-CF3 |
Cl3C-CH3 |
Cl3C-CF3 |
|
|
|
ClFHC-CH3 |
gauche-ClH2C-CH2Cl |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Chlorine |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CH3CHCl2.html |
|
|
|
|
|
|
Last
Modified 10 Aug 2007 |
|
|
|
|
|
|
|
|
|
|