CH3Cl





















 







Deuterium and Chlorine


Nuclear Quadrupole Coupling Constants


in Methyl Chloride


 








 


 





A number of papers have been published on spectroscopic studies of methyl chloride.  Relevant to this work are papers by Kukolich et al. [1,2], Wlodarczak et al. [3], Stříteská et al. [4], Man and Butcher [5], Imachi et al. [6],  Jensen et al. [7], and Duncan [8].  These report deuterium [1] and chlorine [2-5] nqcc's and equilibrium molecular structures [6-8].

 








Calculation of the deuterium and chlorine nqcc's was made here on the equilibrium structures.  These nqcc's are compared with available experimental values in Tables 1 - 4 given below.  Structure parameters [6-8] and atomic coordinates [6] respectively are given in Tables 5 and 6.

 








 








In Table 1, Xuu is the component of the nqcc tensor along the threefold symmetry axis.  Corresponding to the atomic coordinates given below in Table 4, Xvv and Xww are the components along the v- and w- axes for the Cl atom in the uv-plane.

The subscripts x,y,z refer to the principal axes of the nqcc tensor.  The nqcc y-axis is chosen coincident with the w-axis.  Ř (degrees) is the angle between its subscripted parameters.  ETA = (Xxx - Xyy)/Xzz.

 








RMS is the root mean square difference between calculated and experimental diagonal nqcc's.  RSD is the residual standard deviation of calibration of the model for calculation of the nqcc's.

 








   







Table 1.  Deuterium nqcc's in CD3Cl (kHz).

   





Calc / Ref   Reference is for the structure on which the calculation was made.

 









Calc / Ref
  Expt. [1]

 







2H Xuu
- 59.4 [6]
- 59.3(16)


Xvv
157.6



  Xww
- 98.2




Xuv
- 81.8



 







Xxx
- 86.7




Xyy
- 98.2




Xzz
184.9




ETA
0.062




Řz,u
71.50




Řu,CD
71.42




Řz,CD
  0.07



 






2H Xuu
- 60.1 [7]
- 59.3(16)


Xzz
187.0




ETA
0.062




 





2H Xuu
- 60.6 [8]
- 59.3(16)


Xzz
186.2




ETA
0.061




 






 








 








   







Table 2.  Deuterium nqcc's in CHD2Cl (kHz).

   





Calc / Ref   Reference is for the structure on which the calculation was made.

 









Calc / Ref
  Expt.


 







2H Xaa
- 56.0 [6]




Xbb
  93.6




  Xcc
- 37.6





Xab
±75.2




  Xac
  41.8





Xbc ±
107.8



 






2H Xaa
- 56.7 [7]





Xbb
  94.7





Xcc
- 38.0





Xab
±76.0




Xac
  42.2





Xbc ± 109.0





 





2H Xaa
- 57.3 [8]




Xbb
  94.9





Xcc
- 37.5





Xab
±74.8




Xac
  41.6





Xbc ± 108.9





 






 









 









   







Table 3.  Deuterium nqcc's in CH2DCl (kHz).

   





Calc / Ref   Reference is for the structure on which the calculation was made.

 









Calc / Ref
  Expt. [1]


 







2H Xaa
- 51.7 [6]
- 55.3(18)



Xbb
149.9




  Xcc
- 98.2





Xab
- 91.0




 






2H Xaa
- 52.3 [7]

- 55.3(18)


Xbb
151.6





Xcc
- 99.2





Xab
- 92.0





 





2H Xaa
- 53.0 [8]
- 55.3(18)


Xbb
151.8





Xcc
- 98.8





Xab
- 90.7





 






 









 









   







Table 4.  Chlorine nqcc's in CH3Cl (MHz).

   





Calc / Ref   Reference is for the structure on which the calculation was made.

 









Calc / Ref
Expt. [2 - 5]
   







35Cl Xzz - 74.86 [6] - 74.7514(11) [3]

 
- 74.86 [7] - 74.7640(15) [4]



-
74.80 [8] -
74.7477(22) [5]






-
74.7533(20) [2]










37Cl Xzz - 59.00 [6] - 58.9166(34) [3]



- 59.00 [7] - 58.9114(14) [4]



-
58.95 [8] -
58.9060(61) [5]






-
58.9102(14) [2]


 







 








The difference between calculated [6] and experimental [3] 35Cl nqcc's is 0.11 MHz (0.14%).  For 37Cl, the difference is 0.08 MHz (0.14%).

 








 


 
Table 5. Structure parameters (Ĺ and degrees).
 



 
re [6] re [7] re [8]






CCl 1.7756 1.7760 1.778

CH 1.0872 1.0854 1.086

HCH 110.35 110.35 110.7


 
















Table 6. Atomic coordinates, re [6]
(More figures are shown than are significant.)
 









  u (Ĺ)
  v (Ĺ)
  w (Ĺ)
 







H - 1.478172
1.030550
0.0

H - 1.478172 - 0.515275 ± 0.892483

C - 1.131805
0.0
0.0

Cl
0.643795
0.0
0.0


 








 








[1] S.G.Kukolich, J.Chem.Phys. 55,4488(1971).

[2] S.G.Kukolich and A.C.Nelson, JACS 95(3),680(1973).


[3] G.Wlodarczak, D.Boucher, R.Bocquet, and J.Demaison, J.Mol. Spectrosc. 116,251(1986).

[4] L.N.Stříteská, M.Šimečková, P.Kania, P.Musil, L.Kolesniková, J.Koubek, and Š.Urban, J.Mol.Struct. 919,89(2009): J.Mol.Spectrosc. 252,90(2008).

[5] H.-T.Man and R.J.Butcher, J.Mol.Spectrosc. 110,19(1985).


[6] M.Imachi, T.Tanaka, and E.Hirota, J.Mol.Spectrosc. 63,265(1976).

[7] P.Jensen, S.Brodersen, and G.Guelachvili, J.Mol.Spectrosc. 88,378 (1981).

[8] J.L.Duncan, J.Mol.Struct. 6,447(1970).

 








J.H.Carpenter and P.Seo, J.Mol.Spectrosc. 113,355(1985):  Xzz(37Cl) = -58.902(3) MHz


"Theoretical Investigation of the Nuclear Quadrupole Interaction of CH3Cl, CH2Cl2 and CHCl3" G.Frantz, H.Dufner, and P.C.Schmidt, Z.Naturforsch. 49a,116(1993).

 








 








CH2Cl2 CHCl3 CH3Br CH2Br2

CH3F CH2F2 CHF3 CH3D

CH3CN CH2(CN)2



 








 








Table of Contents




Molecules/Chlorine




Molecules/Deuterium




Summary/Methyls  Deuterium nqcc's in the substituted methanes.

 








 













CH3Cl.html






Last Modified 12 Sept 2008