H2S






 









Deuterium and Sulfur


Nuclear Quadrupole Coupling Constants


in Hydrogen Sulfide


 








 








 








Deuterium nqcc's in hydrogen sulfide were measured by Viswanathan and Dyke [1], DeLucia and Cederberg [2], and Cazzoli and Puzzarini [3].  Sulfur-33 nqcc's were measured by Saleck, Tanimoto, Belov, Klaus, and Winnewisser [4] and Burrus and Gordy [5].  Edwards, Moncur, and Synder [6] determined an equilibrium molecular structure.

 








Calculation was made here of the deuterium and sulfur nqcc's on the equilibrium structure.  These are compared with the experimental values in Tables 1 - 3.

 


 





In Tables 1 - 3, RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation for the model for calculation of the nqcc's, B3LYP/6-31G(df,3p) for deuterium, and B3LYP/6-311G(3df,3p) and B3LYP/TZV+(3df,3p) for sulfur.

 








Subscripts a,b,c refer to the principal axes of the inertia tensor, subscripts x,y,z to the principal axes of the nqcc tensor.  The b-axis is coincident with the twofold symmetry axis.  The nqcc y-axis is chosen coincident with the inertia c-axis, these are perpendicular to the plane of the molecule.  (degrees) is the angle between its subscripted parameters. ETA = (Xxx - Xyy)/Xzz.

 








 








   







Table 1.  Deuterium nqcc's in D2S (kHz).
   










 Calc.
 Expt. [1]
   







2H Xaa
  52.8
  51.84(17)


Xbb
  36.6
  36.54(13)


Xcc
- 89.4
- 88.38(11)


Xab 109.3 109.24(31)

 







RMS
0.8 (1.4 %)




RSD
1.1 (0.9 %)



 







Xxx
- 64.9
- 65.32(31)


Xyy
- 89.4
- 88.38(11)


Xzz
154.3
153.70(31)


ETA
0.159




z,b
47.11




b,SD
46.06




z,SD
  1.06



 







 








 








   







Table 2.  Deuterium nqcc's in HDS (kHz).
   










 Calc.
 Expt. [3]
   







2H Xaa
152.8

151.7(15)  *



Xbb
- 63.4

- 63.3



Xcc
- 89.4

- 88.4


Xab
- 17.8




 







RMS
0.9 (0.9 %)




RSD
1.1 (0.9 %)



 







Xxx
- 64.9





Xyy
- 89.4





Xzz
154.3





ETA
0.159





z,a
4 68





a,SD
5.74





z,SD
1.06




 







 









* Calculated here from experimental 1.5Xaa = 227.5(23) and (Xbb -  Xcc)/4 = 6.285 kHz.


 









 








 
   








Table 3.  33S nqcc's in H2S (MHz).

 







  Calc [a] B3LYP/6-311G(3df,3p)

  Calc [b] B3LYP/TZV+(3df,3p)

 









Calc. [a]

Calc. [b]
 Expt. [4]
   








Xaa - 33.37 - 33.36 - 32.820(53)

Xbb
- 7.98
- 8.00
- 8.597(66)

Xcc
41.35
41.36
41.416(56)

 







RMS
0.48 (1.7 %)
0.47 (1.7 %)



RSD
0.39 (1.7 %)
0.35 (1.5 %)



 








 








 








Structure parameters, re [6] SH = 1.3356

 


HSH = 92.12o

 







   








[1] R.Viswanathan and T.R.Dyke, J.Mol.Spectrosc. 103,231(1984).

[2] F.C.DeLucia and J.W.Cederberg, J.Mol.Spectrosc. 40,52(1971).

[3] G.Cazzoli and C.Puzzarini, 71st ISMS, 2016.


[4] A.H.Saleck, M.Tanimoto, S.P.Belov, Th.Klaus, and G.Winnewisser, J.Mol.Spectrosc. 171,481(1995).

[5] C.A.Burrus and W.Gordy, Phys.Rev. 92,274(1953).

[6] T.H.Edwards, N.K.Moncur, and L.E.Synder, J.Chem.Phys. 46,2139(1967).

 









G.Cazzoli and C.Puzzarini, J.Mol.Spectrosc. 298,31(2014):  Xaa(33S) = -32.7875(65), Xbb = -8.6623(33), Xcc = 41.4498(64) MHz.


T.Helgaker, J.Gauss, G.Cazzoli, and C.Puzzarini, J.Chem.Phys. 139,244308(2013). Xaa(33S) = -32.8023(80), Xbb = -8.6620(85), Xcc = 41.4643(85) MHz.

R.L.Cook, F.C.DeLucia, and P.Helminger, J.Mol.Struct. 28,237(1975):  re(SH) = 1.3362 , re(HSH) = 92.06o.

 








 








H2O H2CO H2CS SH3+

 








 








Table of Contents




Molecules/Deuterium




Molecules/Sulfur

 








 













H2S.html






Last Modified 28 Nov 2016