BrNO





 









Nitrogen and Bromine


Nuclear Quadrupole Coupling Constants


in Nitrosyl Bromide


 







 

 








   







Table 1.  Nitrogen nqcc's in 79BrNO (MHz).  Calculation was made on the equilibrium structure [1].
   






Calc. Expt. [2]
 
14N Xaa 0.723
Xbb - Xcc - 8.574 - 8.5038(80)
Xbb - 4.648
Xcc 3.926
|Xab| 1.646
 


 







 
The difference between calculated and experimental (Xbb - Xcc) is 70 kHz (0.83 %).  On the substitution structure (Table 2), the difference is 23 kHz (0.27 %).
 
 
   







Table 2.  Nitrogen nqcc's in 79BrNO (MHz).  Calculation was made on the substitution structure [3].
   






Calc. Expt. [2]
 
14N Xaa 0.718
Xbb - Xcc - 8.480 - 8.5038(80)
Xbb - 4.599
Xcc 3.881
|Xab| 1.566
 
 
 
In Tables 3 - 6, RMS is the root mean square difference between calculated and experimental diagonal nqcc's.  RSD is the residual standard deviation of the calibration of the computional model for calculation of the nqcc's.
 
   







Table 3.  Nitrogen nqcc's in 81BrNO (MHz).  Calculation was made on the equilibrium structure [1].
   






Calc. Expt. [4]
 
14N Xaa 0.723 1.21(43)
Xbb - Xcc - 8.575 - 8.5240(95)
Xbb - 4.649 - 4.87
Xcc 3.926 3.66
|Xab| 1.644 1.25(12)
 
RMS 0.34 (10.6 %)
RSD 0.030 (1.3 %)
 
 
 
   







Table 4.  Nitrogen nqcc's in 81BrNO (MHz).  Calculation was made on the substitution structure [3].
   






Calc. Expt. [4]
 
14N Xaa 0.719 1.21(43)
Xbb - Xcc - 8.481 - 8.5240(90)
Xbb - 4.600 - 4.86
Xcc 3.881 3.66
|Xab| 1.565 1.25(12)
 
RMS 0.34 (10.6 %)
RSD 0.030 (1.3 %)
 
 
In Tables 3 and 4, the RMS differences, although large, are less than the uncertainty in the experimental nqcc's.  For Xbb - Xcc, which is accurately measured, agreement between calculated and experimental values is good.
 
 
   







Table 5.  Bromine nqcc's in BrNO (MHz).  Calculation was made on the equilibrium structure [1].
   






Calc. Expt. [2]
 
79Br Xaa 380.44 387.303(50)
Xbb - 241.80 - 237.048
Xcc - 138.64 - 150.255
|Xab| 187.28 192.75(45)
 
RMS 8.25 (3.20 %)
RSD 1.58 (0.39 %)
 
81Br Xaa 317.92 323.636(48)
Xbb - 202.09 - 198.092
Xcc - 115.83 - 125.544
|Xab| 156.34 161.498(59)
 
RMS 6.90 (3.20 %)
RSD 1.38 (0.40 %)
 
 
 
   







Table 6.  Bromine nqcc's in BrNO (MHz).  Calculation was made on the substitution structure [3].
   






Calc. Expt. [2]
 
79Br Xaa 391.61 387.303(50)
Xbb - 249.81 - 237.048
Xcc - 141.80 - 150.255
|Xab| 188.20 192.75(45)
 
RMS 9.18 (3.56 %)
RSD 1.58 (0.39 %)
 
81Br Xaa 327.26 323.636(48)
Xbb - 208.79 - 198.092
Xcc - 118.47 - 125.544
|Xab| 157.10 161.498(59)
 
RMS 7.70 (3.57 %)
RSD 1.38 (0.40 %)
 
 
 
 
Table 7. Molecular structure parameters (Å and degrees).
re [1] rs [3]
BrN 2.144 2.140
NO 1.133 1.146
BrNO 114.1 114.5


 
 

[1] C.Delgi Esposti, F.Tamassia, G.Cazzoli, and Z.Kisiel, J.Mol.Spectrosc. 170,582(1995).
[2] C.Delgi Esposti, F.Tamassia, and G.Cazzoli, J.Mol.Spectrosc. 163,313(1994).
[3] D.J.Millen and D.Mitra, Trans. Faraday Soc. 66,2414 (1970).
[4] L.Bizzocchi, C.Delgi Esposti, and F.Tamassia, Chem.Phys.Lett. 293,441(1998).

 








 








HNO FNO ClNO CH3NO
 

 








Table of Contents



Molecules/Nitrogen

Molecules/Bromine



 

 













BrNO.html






Last Modified 2 Jan 2008