CH3CH2CH2CH2-C(=O)Cl




 





 





 





 





 









Chlorine


Nuclear Quadrupole Coupling Constants


in syn-gauche-anti Pentanoyl Chloride


 








 








 








Chlorine nqcc's in the syn-gauche-anti conformer of pentanoyl chloride have been determined by Powoski and Cooke [1].  Calculation was made here of the nqcc tensors on molecular structures given by MP2/6-311+G(d,p) and MP2/6-311+G(2d,p) optimization with approximate equilibrium (~ re) bond lengths derived as described here.  Calculated and experimental nqcc's are compared in Tables 1 and 2.  Structure parameters are given in Table 3, rotational constants in Table 4.

 








In Tables 1 and 2, subscripts a,b,c refer to the principal axes of the inertia tensor; x,y,z to the principal axes of the nqcc tensor.  The nqcc y-axis is chosen coincident with the inertia c-axis, these are perpendicular to the molecular symmetry plane.  Ø (degrees) is the angle between its subscripted parameters.  ETA = (Xxx - Xyy)/Xzz.

RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation for the B1LYP/TZV(3df,2p) model for calculation of the nqcc's, which may be taken as an estimate of the uncertainty in the calculated nqcc's (notwithstanding uncertainties in the optimized structures).

 








  








   








Table 1.  35Cl nqcc's in syn-gauche-anti CH3CH2CH2CH2-C(=O)Cl (MHz).  Calculation was made on (1) MP2/6-311+G(d,p) and (2) MP2/6-311+G(2d,p) optimized structures each with ~ re bond lengths.

 









Calc (1)
Calc (2)
Expt. [1]
   








Xaa - 47.76 - 47.95 - 48.006(15)

Xbb
33.22
33.20
32.164(20)

Xcc
14.54
14.75
15.842(13)

|Xab|
20.79 *

20.66 *

20.38(30)

|Xac|
22.94

22.52

21.29(49)


|Xbc|
  4.55

  4.39




 







RMS
0.98 (3.1 %)
0.87 (2.7 %)



RSD
0.49 (1.1 %)
0.49 (1.1 %)



 







Xxx
38.30
38.21



Xyy
21.80
21.73



Xzz - 60.10 - 59.95



ETA - 0.2744 - 0.2748



Øz,CCl
  0.38
  0.43



 







   








* Algebraic sign of the product XabXacXbc is negative.

 









 








   








Table 2.  37Cl nqcc's in syn-gauche-anti CH3CH2CH2CH2-C(=O)Cl (MHz).  Calculation was made on (1) MP2/6-311+G(d,p) and (2) MP2/6-311+G(2d,p) optimized structures each with ~ re bond lengths.

 









Calc (1)
Calc (2)
Expt. [1]
   








Xaa - 37.80 - 37.94 - 37.955(67)

Xbb
26.21
26.20
25.382(86)

Xcc
11.58
11.75
12.573(54)

|Xab|
16.34 *

16.24 *

16.12(11)

|Xac|
17.89

17.57

17.68(66)


|Xbc|
  3.55

  3.43




 







RMS
0.75 (3.0 %)
0.67 (2.6 %)



RSD
0.44 (1.1 %)
0.44 (1.1 %)



 








 









* Algebraic sign of the product XabXacXbc is negative.

 








 












Table 3.  syn-gauche-anti Pentanoyl Chloride.  Heavy atom structure parameters, (1) MP2/6-311+G(d,p) and (2) MP2/6-311+G(2d,p) optimized structures each with ~ re bond lengths. (Å and degrees).  Complete structures are given here in Z-matrix format.
 




~ re(1) ~ re(2)





C(14)C(9) 1.5016 1.5016
C(14)=O 1.1848 1.1848
C(14)Cl 1.8030 1.8030
C(9)C(14)=O 127.51 127.99
C(9)C(14)Cl 111.96 111.72
C(9)C(6) 1.5189 1.5189
C(6)C(2) 1.5214 1.5214
C(2)C(1) 1.5205 1.5205
C(14)C(9)C(6) 112.63 112.62
C(9)C(6)C(2) 112.96
113.02
C(6)C(2)C(1) 112.16
112.00
OC(14)C(9)C(6)
    9.89
    8.92
C(14)C(9)C(6)C(2)
  71.06
  71.02
C(9)C(6)C(2)C(1) 179.88
179.87


 








 













Table 4.  syn-gauche-anti Pentanoyl Chloride.  Rotational Constants (MHz).  35Cl species.
 



 
~ re(1) ~ re(2)    Expt. [1]






A 5752.3 5779.7 5829.4500(42)

B   892.8
  892.8
  880.05983(52)

C   846.0
  844.5
  831.65621(62)


 








 








[1] R.A.Powoski and S.A.Cooke, J.Mol.Struct. 1021,29(2012).

 








 








HC(=O)Cl FC(=O)Cl CH3C(=O)Cl CH2BrC(=O)Cl

CH2FC(=O)Cl HCCC(=O)Cl syn-trans-CH2=CH-C(=O)Cl

(CH3)3C-C(=O)Cl syn-gauche CH3CH2CH2-C(=O)Cl Butyryl Chloride


Pentaoyl Chloride SAA








 








 








Table of Contents




Molecules/Chlorine




 








 













C4H9COCl_SGA.html






Last Modified 30 April 2012