CH2=CHCN












 








Nitrogen


Nuclear Quadrupole Coupling Constants


in Vinyl Cyanide (Acrylonitrile)


 








 








 








Calculation of the nitrogen nqcc's in vinyl cyanide was made on the rmrho structure of Colmont et al. [1], the near-equilibrium structure of Demaison et al. [2], and the seim-experimental equilibrium structure of Kraśnicki et al. [3].  These are compared with the experimental nqcc's of Müller et al. [4] in Tables 1 - 4.  Structure parameters are compared in Table 5.

 








In Tables 1 - 4, RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation of the B3PW91/6-311+G(df,pd) model for calculation of the nitrogen nqcc's.

Subscripts a,b,c refer to the principal axes of the inertia tensor; x,y,z to the principal axes of the nqcc tensor.  The nqcc y-axis is chosen coincident with the inertia c-axis, these are perpendicular to the molecular plane.  Ø (degrees) is the angle between its subscripted parameters.  ETA = (Xxx - Xyy)/Xzz.

 








 








   










Table 1. 14N nqcc's in CH2=CHCN (MHz).  Calculation was made on the rmrho structure of Colmont et al. [1], the near-re structure of Demaison et al. [2] and the semi-experimental re structure of Kraśnicki et al. [3].
   












Calc rmrho 
Calc near-re
Calc reSE
Expt. [4]
   










Xaa - 3.790 - 3.799 - 3.788 - 3.78907(40)

Xbb
1.677
1.690
1.686
1.68606(43)

Xcc
2.113
2.109
2.102
2.10301(49)

|Xab|
1.749
1.736
1.730



 









RMS
0.008 (0.30 %) 0.007 (0.29 %) 0.001 (0.03 %)


RSD
0.030 (1.3 %) 0.030 (1.3 %) 0.030 (1.3 %)


 









Xxx
2.189
2.193
2.187



Xyy
2.113
2.109
2.102



Xzz - 4.302 - 4.302 - 4.289



ETA - 0.018 - 0.019 - 0.020



Øz,a
16.31
16.15
16.15



Øa,CN
16.51
15.52
15.50



Øz,CN
  0.20
  0.63
  0.65



 










 








 








   










Table 2. 14N nqcc's in 13CH2=CHCN (MHz).  Calculation was made on the rmrho structure of Colmont et al. [1], the near-re structure of Demaison et al. [2] and the semi-experimental re structure of Kraśnicki et al. [3].
   












Calc rmrho 
Calc near-re
Calc reSE
Expt. [4]
   










Xaa - 3.766 - 3.776 - 3.765 - 3.76634(55)

Xbb
1.653
1.667
1.663
1.6547(41)

Xcc
2.113
2.109
2.102
2.1116(40)

|Xab|
1.786
1.772
1.766



 









RMS
0.001 (0.04 %) 0.009 (0.36 %) 0.007 (0.29 %)


RSD
0.030 (1.3 %) 0.030 (1.3 %) 0.030 (1.3 %)


 










 








 








   










Table 3. 14N nqcc's in CH2=13CHCN (MHz).  Calculation was made on the rmrho structure of Colmont et al. [1], the near-re structure of Demaison et al. [2] and the semi-experimental re structure of Kraśnicki et al. [3].
   












Calc rmrho 
Calc near-re
Calc reSE
Expt. [4]
   










Xaa - 3.803 - 3.812 - 3.801 - 3.80158(55)

Xbb
1.690
1.703
1.699
1.6902(41)

Xcc
2.113
2.109
2.102
2.1114(40)

|Xab|
1.729
1.715
1.709



 









RMS
0.001 (0.05 %) 0.010 (0.39 %) 0.007 (0.29 %)


RSD
0.030 (1.3 %) 0.030 (1.3 %) 0.030 (1.3 %)


 










 








 








   










Table 4. 14N nqcc's in CH2=CH13CN (MHz).  Calculation was made on the rmrho structure of Colmont et al. [1], the near-re structure of Demaison et al. [2] and the semi-experimental re structure of Kraśnicki et al. [3].
   












Calc rmrho 
Calc near-re
Calc reSE
Expt. [4]
   










Xaa - 3.787 - 3.797 - 3.785 - 3.78580(40)

Xbb
1.674
1.688
1.683
1.68435(167)

Xcc
2.113
2.109
2.102
2.10145(166)

|Xab|
1.754
1.740
1.734



 









RMS
0.009 (0.35 %) 0.008 (0.32 %) 0.001 (0.03 %)


RSD
0.030 (1.3 %) 0.030 (1.3 %) 0.030 (1.3 %)


 










 








 



Table 5.  Molecular structure parameters (Å and degrees).
 





rmrho [1] near-re [2] reSE [3]






C=C 1.333 1.337 1.3353(4)

C-C 1.429 1.432 1.4314(4)

CN 1.157 1.157 1.1583(4)

CH 1.093 1.082 1.0798(4)

CHt 1.088 1.080 1.0800(13)

CHc 1.097 1.081 1.0797(4)

C=C-C 122.5 122.1 122.03(6)

C-CN 180.7 179.1 179.08(11)

C=CH 121.7 121.4 121.50(3)

C=CHt 120.3 120.3 120.28(21)

C=CHc 120.2 121.5 121.22(2)


 








 








[1] J.M.Colmont, G.Wlodarczak, D.Priem, H.S.P.Müller, E.H.Tien, R.J.Richards, and M.C.L.Gerry, J.Mol.Spectrosc. 181,330(1997).

[2] J.Demaison, J.Coslèou, R.Bocquet, and A.G.Lesarri, J.Mol. Spectrosc. 167,400(1994).

[3] A.Kraśnicki, Z.Kisiel, B.J.Drouin, and J.C.Pearson, J.Mol.Struct. 1006,20(2011).

[4] H.S.P.Müller, A.Belloche, K.M.Menton, C.Comito, and P.Schilke, J.Mol.Spectrosc. 251,319(2008).

 








O.I.Baskakov, S.F.Dyubko, V.V.Ilyushin, M.N.Efimenko, V.A.Efremov, S.V.Podnos, and E.A.Alekseev, J.Mol.Spectrosc. 179,94(1996).

M.Stolze and D.H.Sutter, Z.Naturforsch. 40a,998(1985).

M.C.L.Gerry, K.Yamada, and G.Winnewisser, J.Phys.Chem.Ref.Data 8,107(1979).


 








 








 








Methacrylonitrile CH2CHCl CH2CHBr

c-Crotononitrile t-Crotononitrile



 








 








Table of Contents




Molecules/Nitrogen




 








 













CH2CHCN.html






Last Modified 4 July 2011