|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CH3I |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Iodine |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
|
in
Methyliodide |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calculation was made of the 127I nqcc's
in methyliodide on an re
structure determined by Demaison et al. [1], and on earlier rs
structures determined by Mallinson [2] and Duncan and Mallinson
[3]. These are compared
with the experimental nqcc's [4 - 12] in Tables 1 - 3. Molecular
structure parameters are given in Table 4. |
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 - 3, subscripts a,b,c
refer to the principal axes of the inertia tensor; x,y,z to the
principal axes of the nqcc tensor. Ø (degrees) is the
angle between its subscripted parameters. ETA = (Xxx -
Xyy)/Xzz. |
|
|
RMS is the root mean square
difference between calculated and experimental diagonal nqcc's
(percentage of the average of the magnitudes of the experimental
nqcc's). RSD is the calibration residual standard deviation for
the B1LYP/6-311G(df,p) model for calculation of the nqcc's, which may
be taken as an estimate of the uncertainty in the calculated nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. Iodine nqcc's in
CH3I (MHz). Calc. = B1LYP/6-311G(df,p).
Calculation was made on the re [1], rs [2],
and rs [3] structures. In Calc. column, Ref. is for
the structure on which calculation was made. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc./Ref. |
|
Expt./Ref. |
|
|
|
|
|
|
|
|
|
|
127I |
Xaa |
- |
1918.0 [1] |
- |
1934.1306(51) [4] |
|
|
|
|
- |
1919.8 [2] |
- |
1934.11(2) [5] |
|
|
|
|
- |
1924.8 [3] |
- |
1934.13022(39) [6] |
|
|
|
|
|
|
- |
1934.136(5) [7] |
|
|
|
|
|
|
-
|
1934.080(10) [8]
|
|
|
|
|
|
|
-
|
1934.16(2) [9]
|
|
|
|
|
|
|
- |
1934 [10] |
|
|
|
|
|
|
-
|
1934.0 [11]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Iodine nqcc's in
CH2DI (MHz). Calc. = B1LYP/6-311G(df,p).
Calculation was made on the re structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [12] |
|
|
|
|
|
|
|
|
|
|
127I |
Xaa |
- |
1914.7 |
- |
1928.8833(89) |
|
|
|
Xbb - Xcc |
|
- 3.315 |
|
- 3.550(99) |
|
|
|
Xbb |
|
955.7 |
|
962.667 |
|
|
|
Xcc |
|
959.0 |
|
966.217 |
|
|
|
|Xab| |
|
97.6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
10.0 (0.78 %) |
|
|
|
|
|
RSD |
|
15.2 (1.23 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xzz |
- |
1918.0 |
|
|
|
|
|
ETA |
|
0 |
|
|
|
|
|
Øz,a |
|
1.94 |
|
|
|
|
|
Øa,CI |
|
1.94 |
|
|
|
|
|
Øz,CI |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. Iodine nqcc's in
CHD2I (MHz). Calc. = B1LYP/6-311G(df,p).
Calculation was made on the re structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [12] |
|
|
|
|
|
|
|
|
|
|
127I |
Xaa |
- |
1915.2 |
- |
1927.6689(99) |
|
|
|
Xbb - Xcc |
|
2.80 |
|
3.027(28) |
|
|
|
Xbb |
|
959.0 |
|
965.348 |
|
|
|
Xcc |
|
956.2 |
|
962.321 |
|
|
|
|Xac| |
|
89.7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
8.8 (0.69 %) |
|
|
|
|
|
RSD |
|
23.8 (1.70 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xzz |
- |
1918.0 |
|
|
|
|
|
ETA |
|
0 |
|
|
|
|
|
Øz,a |
|
1.79 |
|
|
|
|
|
Øa,CI |
|
1.79 |
|
|
|
|
|
Øz,CI |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. CH3I
Molecular structure parameters (Å and degrees). |
|
|
|
|
|
|
|
re [1] |
rs [2] |
rs [3] |
|
|
|
|
|
|
CI |
2.1336 |
2.1358(20) |
2.1423(15) |
|
CH |
1.0819 |
1.0840(30) |
1.088(2) |
|
HCH |
111.40 |
|
111.52(25) |
|
HCI |
107.62 |
107.47(20) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] J.Demaison, L.Margulès,
and J.E.Boggs, Struct.Chem. 14,159(2003). |
|
|
[2] P.D.Mallinson, J.Mol.Spetrosc.
55,94(1975). Substitution structure and, in CH2DI, Xaa
= -1928.746(81), Xbb = 962.527(90), and Xcc =
966.219(90) MHz. |
|
|
[3] J.L.Duncan and P.D.Mallinson,
J.Mol.Spetrosc. 39,471(1971). |
|
|
[4] S.Carocci, A.DiLieto, A.DeFanis,
P.Minguzzi, S.Alanko, and J.Pietilä, J.Mol.Spectrosc.
191,368(1998). |
|
|
[5] S.H.Young and S.G.Kukolich,
J.Mol.Spectrosc. 114,483(1985). |
|
|
[6] B.D.Osipov and M.N.Grabois,
J.Mol.Spectrosc. 111,344(1985). |
|
|
[7] D.Boucher, J.Burie, D.Dangoisse,
J.Demaison, and A.Dubrulle, Chem.Phys. 29,323(1978). |
|
|
[8] G.Wlodarczak, D.Boucher, R.Bocquet, and J.Demaison, J.Mol.Spectrosc. 124,53(1987).
|
|
|
[9] J.Burie, D.Boucher, J.Demaison, and A.Dubrulle, Mol.Phys. 32,289(1976).
|
|
|
[10] W.Gordy, J.W.Simmons, and
A.G.Smith, Phys.Rev. 74,243(1948). |
|
|
[11] W.J.O.Thomas, J.T.Cox, and W.Gordy, J.Chem.Phys. 22,1718(1954). |
|
|
[12] F.Willaert, L.Margulès,
K.Kyllönen, A.-M.Ahonen, H.Sarkkinen, S.Alanko, H.Mäder, and
J.Demaison, J.Mol.Spectrosc. 248,146(2008). |
|
|
|
|
|
|
|
|
|
|
|
|
R.A.Motiyenko, E.A.Alekseev,
A.V.Kryvda, V.G.Gerasimov, and S.F.Dyubko, J.Mol.Spectrosc.
245,81(2007): In 13CH3I, eqQ =
-1934.22584(47) MHz. |
|
|
G.Wlodarczak, D.Boucher, R.Bocquet, and J.Demaison, J.Mol.Spectrosc. 124,53(1987): In 13CH3I, eqQ =
-1934.291(164) MHz, and in CD3I, eqQ =
-1928.918(86) MHz. |
|
|
J.Demaison, D.Boucher, G.Piau, and P.Glorieux, J.Mol.Spectrosc. 107,108(1984): In CD3I, eqQ =
-1928.896(43) MHz. |
|
|
J.L.Duncan, J.Mol.Struct.
6,447(1970): re structure, CI = 2.113(2) Å, CH
= 1.085(3) Å, and HCH = 111o17'(25'). On this
structure, calculated Xaa in CH3I is -1899.6
MHz. |
|
|
J.Gadhi, G.Wlodarczak, J.Legrand, and J.Demaison, Z.Naturforsch. 42a,1241(1987): In CD3I, eqQ =
-1928.983(38) MHz.
|
|
|
R.Livingston, B.M.Benjamin, J.T.Cox, and W.Gordy, Phys.Rev. 92,1271(1953): eQq(131I) = -973(9) MHz. 131I is radioactive with half-life of 8 days.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CH2I2 |
CH3Cl |
CH3Br |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Iodine |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CH3I.html |
|
|
|
|
|
|
Last
Modified 9 Dec 2008 |
|
|
|
|
|
|
|
|
|
|