H2NNO





















 







Nitrogen and Deuterium



Nuclear Quadrupole Coupling Constants


in N-Nitrosamide



 








 








 








Nitrogen and deuterium nqcc's in N-nitrosamide were determined by McCarthy et al. [1], which authors also derived an effective ro structure.


 








Nitrogen and deuterium nqcc's were calculated here on this effective structure.  These are compared with the experimental nqcc'c in Tables 1 - 4.   Rtructure parameters are given in Table 5.

 


 





In Tables 1 - 4, subscripts a,b,c refer to the principal axes of the inertia tensor; x,y,z to the principal axes of the nqcc tensor.  (degrees) is the angle between its subscripted parameters.  ETA = (Xxx - Xyy)/Xzz.

 








RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percentage of the average of the magnitudes of the experimental nqcc's).  RSD is the calibration residual standard deviation for the model for calculation of the efg's/nqcc's, B3PW91/6-311+G(df,pd) for nitrogen, and B3LYP/6-31G(df,3p) for deuterium.


 








 








   







Table 1.  N(1) nqcc's in H2N(1)N(2)O (MHz).  Calculation was made on the ro structure.

   










Calc
Expt [1]

   







14N(1) Xaa
2.286
2.283(18)



Xbb
1.862
1.850(37)



Xcc - 4.148 -
4.133(41) *



|Xab|
114.3











  RMS

0.011 (0.6 %)





RSD
0.030 (1.3 %)



 







Xxx
3.002




Xyy
1.146





Xzz -
4.148





ETA -
0.447





z,c
  0




 







 








* Calculated here from zero trace condition.


 









 









   







Table 2.  N(2) nqcc's in H2N(1)N(2)O (MHz).  Calculation was made on the ro structure.

   










Calc
Expt [1]

   







14N(2) Xaa
1.919
1.951(20)



Xbb -
6.051 -
6.068(33)



Xcc
4.132
4.117(39) *



|Xab|
0.602











  RMS

0.023 (0.8 %)





RSD
0.030 (1.3 %)



 







Xxx
1.964




Xyy
4.132




Xzz -
6.096





ETA
0.356





z,b
4.30





b,bi**
3.01





z,bi
7.31




 






   








* Calculated here from zero trace condition.  ** "bi" is bisector of ONN angle.


 








 








   







Table 3.  Nitrogen and Deuterium nqcc's in DtHN(1)N(2)O (MHz).  Calculation was made on the ro structure.

   










Calc
Expt [1]

   







14N(1) Xaa
2.251

2.258(10)



Xbb
1.896





Xcc -
4.148





|Xab|
0.910




 






14N(2) Xaa
1.893

1.937(12)



Xbb -
6.025





Xcc
4.132





|Xab|
0.753












Dtrans
Xaa
0.1654

0.1437(30)



Xbb -
0.0019





Xcc
0.1635





|Xab|
0.1748




 








 








 









   







Table 4.  Nitrogen and Deuterium nqcc's in DcHN(1)N(2)O (MHz).  Calculation was made on the ro structure.

   










Calc
Expt [1]

   







14N(1) Xaa
2.352

2.352(10)



Xbb
1.796





Xcc -
4.148





|Xab|
0.885




 






14N(2) Xaa
1.953

1.989(12)



Xbb -
6.085





Xcc
4.132





|Xab|
0.306












Dcis
Xaa -
0.0989
-
0.0978(32)



Xbb
0.2409





Xcc -
0.1420





|Xab|
0.0774




 








 








 













Table 5.  Molecular structure parameters ( and degrees).







  ro [1]







ON 1.217(3)


NN 1.342(3)


NH(trans) 0.991(4)


NH(cis)
1.010(3)



ONN
113.67(3)



NNH(trans)
116.3(4)



NNH(cis)
117.5(3)









 








 








[1] M.C.McCarthy, K.L.K.Lee, and J.F.Stanton, J.Che.Phys. 147,13401(2017).


 








 








NNO HNNO+



 








 








Table of Contents




Molecules/Deuterium




Molecules/Nitrogen




 








 













H2NNO.html






Last Modified 5 Oct 2017