|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HNCS |
|
PDF |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Deuterium
and Nitrogen
|
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
|
|
in
Isothiocyanic Acid |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calculation of the D and N nqcc
tensors in isothiocyanic acid was made
here on the equilibrium molecular structure of Ross et al. [1], and on
the substitution structure of Yamada et al. [2].
These are compared with the experimental nqcc's in
Tables 1 - 3. Structure parameters are given in Table 4. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 - 3, RMS is the root mean
square difference between calculated and experimental diagonal nqcc's
(percentage of the average of the magnitudes of the experimental
nqcc's). RSD is the calibration residual standard deviation for
the model for calculation of the nqcc's, B3LYP/6-31G(df,3p) for
deuterium, and B3PW91/6-311+G(df,pd) for nitrogen. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Subscripts a,b,c refer to the
principal axes of the inertia tensor, subscripts x,y,z to the principal
axes of the nqcc tensor. The nqcc y-axis is chosen coincident
with the inertia c-axis, these are perpendicular to the plane of the
molecule. Ø (degrees) is the angle between its subscripted
parameters. ETA = (Xxx -
Xyy)/Xzz. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. Deuterium nqcc's
in DNCS (kHz). Calculation was made on the re and rs
molecular structures. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / re |
|
Calc / rs |
|
Expt. [3,4] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
77.9 |
|
100.0 |
|
94.8(26) |
|
|
Xbb |
|
56.2 |
|
41.9 |
|
40.5(14) |
|
|
Xcc |
- |
134.1 |
- |
141.9 |
- |
135.3(14) |
|
|
|Xab| |
|
198.0 |
|
207.9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
13.3 (15 %) |
|
4.9 (5.4 %) |
|
|
|
|
RSD |
|
1.1 (0.9 %) |
|
1.1 (0.9 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
- |
131.2 |
- |
138.9 |
- |
135.3(14) |
|
|
Xyy |
- |
134.1 |
- |
141.9 |
- |
135.3(14) |
|
|
Xzz |
|
265.3 |
|
280.8 |
|
270.6(28) |
|
|
ETA |
|
0.011 |
|
0.010 |
|
|
|
|
Øz,a |
|
43.43 |
|
41.0 |
|
41.2(15) |
|
|
Øa,ND |
|
44.99 |
|
42.4 |
|
|
|
|
Øz,ND |
|
1.56 |
|
1.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. 14N nqcc's
in DNCS (MHz). Calculation was made on the re and rs
molecular structures. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / re |
|
Calc / rs |
|
Expt. [3,4] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
1.134 |
|
1.319 |
|
1.2135(15) |
|
|
Xbb |
- |
0.498 |
- |
0.624 |
- |
0.5930(9) |
|
|
Xcc |
- |
0.636 |
- |
0.695 |
- |
0.6206(9) |
|
|
|Xab| |
|
1.249 |
|
1.118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.072 (8.9 %) |
|
0.077 (9.5 %) |
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
- |
1.174 |
- |
1.134 |
- |
1.599(60) |
|
|
Xyy |
- |
0.636 |
- |
0.695 |
- |
0.6206(9) |
|
|
Xzz |
|
1.810 |
|
1.829 |
|
2.220(60) |
|
|
ETA |
- |
0.298 |
- |
0.240 |
|
|
|
|
Øz,a |
|
28.42 |
|
24.5 |
|
30.9(16) |
|
|
Øa,ND |
|
44.99 |
|
42.4 |
|
|
|
|
Øz,ND |
|
16.57 |
|
17.9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. 14N nqcc's
in HNCS (MHz). Calculation was made on the re and rs
molecular structures. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc / re |
|
Calc / rs |
|
Expt. [1,2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
|
1.091 |
|
1.282 |
|
1.1651(23) |
|
|
Xbb |
- |
0.455 |
- |
0.587 |
- |
0.5284(17) |
|
|
Xcc |
- |
0.636 |
- |
0.695 |
- |
0.6367(16) |
|
|
|Xab| |
|
1.277 |
|
1.149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.060 (7.8 %) |
|
0.083 (10.6 %) |
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
- |
1.174 |
- |
1.134 |
- |
1.591(60) |
|
|
Xyy |
- |
0.636 |
- |
0.695 |
- |
0.6367(16) |
|
|
Xzz |
|
1.810 |
|
1.829 |
|
2.228(60) |
|
|
ETA |
- |
0.298 |
- |
0.240 |
|
|
|
|
Øz,a |
|
28.42 |
|
25.4 |
|
31.8(16) |
|
|
Øa,NH |
|
44.99 |
|
43.3 |
|
|
|
|
Øz,NH |
|
16.57 |
|
17.9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
For both D and N, the calculated (on re
structure) and
experimental Xcc are in good agreement. There are
large discrepancies, however,
for Xaa and Xbb. Large-amplitude bending
vibration in the ab-plane has been noted by Heineking and Dreizler [3]
and Ross et al. [1]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. HNCS Molecular
structure parameters, re [1] and rs [2]
(Å and degrees). |
|
|
|
|
|
|
|
|
re [1] |
rs [2] |
|
|
|
|
|
|
|
HN |
1.00178 |
0.993 |
|
|
NC |
1.20046 |
1.207 |
|
|
CS |
1.57480 |
1.5665 |
|
|
HNC |
129.3525 |
131.7 |
|
|
NCS |
174.399 |
173.8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] S.C.Ross, M.Niedenhoff, and
K.M.T.Yamada, J.Mol.Spectrosc. 164,432(1994). "...
large-amplitude [in plane] HNC bending mode." |
|
|
|
[2] K.Yamada, M.Winnewisser,
G.Winnewisser, L.B.Szalanski, and M.C.L.Gerry, J.Mol.Spectrosc.
79,295(1980). |
|
|
|
[3] N.Heineking and H.Dreizler,
Z.Naturforsch. 47a,511(1992). "low-lying, large amplitude bending
vibration." |
|
|
|
[4] M.Rodler, S.Jans-Bürli,
M.Oldani, and A.Bauder, Chem.Phys.Lett. 142,10(1987). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K.Yamada, M.Winnewisser,
G.Winnewisser, L.B.Szalanski, and M.C.L.Gerry, J.Mol.Spectrosc.
78,189(1979): Xaa = 1.114 MHz. |
|
|
|
L.B.Szalanski,
M.C.L.Gerry, G.Winnewisser, K.Yamada, and M.Winnewisser, Can.J.Phys.
56,1297(1978): DNCS, Xaa = 1.19(6) MHz and Xbb - Xcc
< 0.05 MHz. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HNCO |
ClNCO |
HNCSe |
HNSO |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
|
Molecules/Deuterium |
|
|
|
|
|
|
Molecules/Nitrogen |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HNCS.html |
|
|
|
|
|
|
|
Last
Modified 30 April 2009 |
|
|
|
|
|
|
|
|
|
|
|
|