|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O=CCl2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chlorine |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
|
in
Phosgene |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In the following Tables, RMS is the
root mean square difference between calculated and experimental
diagonal nqcc's (percentage of the average of the magnitudes of the
experimental nqcc's). RSD is the calibration residual standard
deviation for the B1LYP/TZV(3df,2p) model for calculation of the
chlorine nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
Subscripts a,b,c refer to the
principal axes of the inertia tensor; x,y,z to the principal axes
of the nqcc tensor. The nqcc y-axis is chosen coincident with the
inertia c-axis, these are perpendicular to the molecular plane.
Ø (degrees) is the angle between its subscripted
parameters. ETA = (Xxx - Xyy)/Xzz. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. Chlorine nqcc's in OC35Cl2
(MHz). Calculation was made on the equilibrium structure of
Nakata et al. [2]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
35Cl |
Xaa |
- |
37.28 |
- |
37.641(25) |
|
|
|
Xbb |
|
11.16 |
|
10.337(29) |
|
|
|
Xcc |
|
26.12 |
|
27.304(16) |
|
|
|
Xab |
± |
53.62 |
|
51.0(16) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.86 (3.4 %) |
|
|
|
|
|
RSD |
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
45.78 |
|
42.7(14) |
|
|
|
Xyy |
|
26.12 |
|
27.304(16) |
|
|
|
Xzz |
- |
71.90 |
- |
70.1(14) |
|
|
|
ETA |
- |
0.273 |
- |
0.220(21) |
|
|
|
Øz,b |
|
57.16 |
|
57.6(3) |
|
|
|
Øb,CCl |
|
55.90 |
|
|
|
|
|
Øz,CCl |
|
1.26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The angle between the two z-axes is
2.52o larger than
the ClCCl angle. This is typical of the XCl2
dichloride moiety. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Chlorine nqcc's in OC35Cl37Cl
(MHz). Calculation was made on the equilibrium structure of
Nakata et al. [2]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
35Cl |
Xaa |
- |
35.60 |
- |
36.009(36) |
|
|
|
Xbb |
|
9.48 |
|
8.705(39) |
|
|
|
Xcc |
|
26.12 |
|
27.304(16) |
|
|
|
|Xab| |
|
54.35 |
|
51.8(16) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.85 (3.5 %) |
|
|
|
|
|
RSD |
|
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
37Cl |
Xaa |
- |
30.70 |
- |
30.899(67) |
|
|
|
Xbb |
|
10.11 |
|
9.379(69) |
|
|
|
Xcc |
|
20.59 |
|
21.520(13) |
|
|
|
|Xab| |
|
41.64 |
|
39.6(12) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.69 (3.4 %) |
|
|
|
|
|
RSD |
|
0.44 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. Molecular
structure parameters re (Å and degrees). |
|
|
|
|
|
|
|
re [2] |
re [3] |
|
|
|
|
|
O=C |
1.1756 |
1.1766(22) |
|
CCl |
1.7381 |
1.7365(12) |
|
ClCCl |
111.79 |
|
|
OCCl |
|
124.05(6) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] A.C.Ferguson and
W.H.Flygare, J.Phys.Chem. 83,3161(1979). |
|
|
[2] M.Nakata, T.Fukuyama,
K.Kuchitsu, H.Takeo, and C.Matsumura, J.Mol.Spectrosc. 83,118(1980). |
|
|
[3] S.Yamamoto, M.Nakata, and
K.Kuchitsu, J.Mol.Spectrosc. 112,173(1985). |
|
|
|
|
|
|
|
|
|
|
|
|
J.H.Carpenter and D.F.Rimmer, J.Chem.Soc. Farad.Trans. 2 74,466(1978): ro structure.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SCCl2 |
SCFCl |
OCBr2 |
CH3COCl |
|
|
HCOCl |
FCOCl |
s-t-CH2CHCOCl |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Chlorine |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OCCl2.html |
|
|
|
|
|
|
Last
Modified 4 June 2003 |
|
|
|
|
|
|
|
|
|
|