S=S=O


















 








 








Sulfur


Nuclear Quadrupole Coupling Constants

in Disulfur Monoxide


 








 








 








Calculation of the nqcc tensors for 33S in disulfur monoxide was made here on the effective [1], substitution [2], and equilibrium [3] structures.  These are compared with the experimental nqcc's of Thornwirth et al. [2] in Tables 1 and 6.  Structure parameters are shown in Table 7.


 








In Tables 1 and 6, subscripts a,b,c refer to the principal axes of the inertia tensor, subscripts x,y,z to the principal axes of the nqcc tensor.  Ø (degrees) is the angle between its subscripted parameters. ETA = (Xxx - Xyy)/Xzz.  

RMS is the root mean square difference between calculated and experimental diagonal nqcc's (percent of the average of the magnitudes of the experimental nqcc's).  RSD is the residual standard deviation of calibration of the model for calculation of the nqcc's.

 








 








   








Table 1.  33S nqcc's in 33S=S=O (MHz).  Calculation was made on the ro structure [1].
   










Calc [a] B3LYP/6-311G(3df,3p) model.



Calc [b] B3LYP/TZV+(3df,3p) model.

 









Calc. [a]
Calc. [b]
Expt. [4]
   








Xaa - 15.23 - 15.43 - 14.5260(14)

Xbb
34.33
35.01
33.90(13)

Xcc - 19.10 - 19.57 - 19.37(13)

|Xab|
11.65
11.90



 







RMS
0.53 (2.2 %)
0.83 (3.7 %)



RSD
0.39 (1.7 %) 0.35 (1.5 %)


 


















   








Table 2.  33S nqcc's in S=33S=O (MHz).  Calculation was made on the ro structure [1].
   










Calc [a] B3LYP/6-311G(3df,3p) model.



Calc [b] B3LYP/TZV+(3df,3p) model.

 









Calc. [a]
Calc. [b]
Expt. [4]
   








Xaa
- 5.26
- 5.01
- 5.8442(14)

Xbb
23.46
22.87
22.21(15)

Xcc - 18.20 - 17.87 - 16.37(15)

|Xab|
  7.86
  7.88



 







RMS
1.32 (8.9 %) 1.06 (7.2 %)


RSD
0.39 (1.7 %) 0.35 (1.5 %)


 








 








 








   








Table 3.  33S nqcc's in 33S=S=O (MHz).  Calculation was made on the rs structure [2].
   










Calc [a] B3LYP/6-311G(3df,3p) model.



Calc [b] B3LYP/TZV+(3df,3p) model.

 









Calc. [a]
Calc. [b]
Expt. [4]
   








Xaa - 15.10 - 15.30 - 14.5260(14)

Xbb
34.23
34.91
33.90(13)

Xcc - 19.13 - 19.60 - 19.37(13)

|Xab|
11.72
11.98



 







RMS
0.41 (1.8 %)
0.75 (3.3 %)



RSD
0.39 (1.7 %) 0.35 (1.5 %)


 


















   








Table 4.  33S nqcc's in S=33S=O (MHz).  Calculation was made on the rs structure [2].
   










Calc [a] B3LYP/6-311G(3df,3p) model.



Calc [b] B3LYP/TZV+(3df,3p) model.

 









Calc. [a]
Calc. [b]
Expt. [4]
   








Xaa
- 5.26
- 5.00
- 5.8442(14)

Xbb
23.43
22.84
22.21(15)

Xcc - 18.18 - 17.84 - 16.37(15)

|Xab|
  7.98
  8.00



 







RMS
1.30 (8.8 %) 1.05 (7.1 %)


RSD
0.39 (1.7 %) 0.35 (1.5 %)


 








 








 








   








Table 5.  33S nqcc's in 33S=S=O (MHz).  Calculation was made on the re structure [3].
   










Calc [a] B3LYP/6-311G(3df,3p) model.



Calc [b] B3LYP/TZV+(3df,3p) model.

 









Calc. [a]
Calc. [b]
Expt. [4]
   








Xaa - 15.02 - 15.22 - 14.5260(14)

Xbb
34.16
34.84
33.90(13)

Xcc - 19.14 - 19.62 - 19.37(13)

|Xab|
11.71
11.97



 







RMS
0.34 (1.5 %)
0.69 (3.0 %)



RSD
0.39 (1.7 %) 0.35 (1.5 %)


 







Xxx - 17.66 - 17.93



Xyy - 19.14 - 19.62



Xzz
36.81
37.55



ETA
0.040
0.045



Øz,a
77.26
77.22



Øa,S=S
18.70
18.70



Øz,S=S
95.96
95.92



 


















   








Table 6.  33S nqcc's in S=33S=O (MHz).  Calculation was made on the re structure [3].
   










Calc [a] B3LYP/6-311G(3df,3p) model.



Calc [b] B3LYP/TZV+(3df,3p) model.

 









Calc. [a]
Calc. [b]
Expt. [4]
   








Xaa
- 5.20
- 4.95
- 5.8442(14)

Xbb
23.50
22.92
22.21(15)

Xcc - 18.30 - 17.97 - 16.37(15)

|Xab|
  7.92
  7.94



 







RMS
1.39 (9.4 %) 1.13 (7.7 %)


RSD
0.39 (1.7 %) 0.35 (1.5 %)


 







Xxx
- 7.24
- 7.05



Xyy - 18.30 - 17.97



Xzz
25.54
25.02



ETA
0.433
0.436



Øz,a
104.44
104.84



Øa,S=S
  18.70
  18.70



Øz,S=S
123.14
123.54



Øz,bi *
    2.08
    2.48



 








 








* Angle between the principal z-axis and the bisector ( bi ) of the S=S=O angle.

 













Table 7.  S=S=O.  Structure parameters (Å and degrees).
 





ro [1] rs [2] re [3]






S=S 1.887(12) 1.8852(22) 1.88424(11)

S=O 1.457(15) 1.4586(19) 1.45621(13)

S=S=O 118.01(43) 117.91(17) 117.876(4)


 








 








[1] E.Tiemann, J.Hoeft, F.J.Lovas, and D.R.Johnson, J.Chem.Phys. 60,5000(1974).

[2] J.Lindenmayer, J.Mol.Spectrosc. 116,315(1986).

[3] J.Lindenmayer, H.D.Rudolph, and H.Jones, J.Mol.Spectrosc. 119,56(1986).

[4] S.Thornwirth, P.Theulé, C.A.Gottlieb, H.S.P.Müller, M.C.McCarthy, and P.Thaddeus, J.Mol.Struct. 795,219(2006).

 








 








CH3SSCH3 (CH3)2SO S=SF2 SO2

 








 








Table of Contents




Molecules/Sulfur




 








 













SSO.html






Last Modified 16 May 2006