|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CHFCl2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chlorine |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
in Dichlorofluoromethane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chlorine nqcc's in dichlorofluoromethane have been
determined by Alonso et al. [1,2], who also derived an "ro-like" structure [1], in which the CH bond length and FCH angle are assumed parameters. Calculation was made here of
the chlorine nqcc's
on this molecular structure, and on an ropt structure given by CCSD(T)_AE/wCVQZ optimization [3]. Calculated and experimental nqcc's are compared in
Tables 1 - 3. Structure parameters are given in
Table 4, atomic coordinates in Table 5.
|
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 - 3,
subscripts a,b,c refer to the
principal axes of the inertia tensor; x,y,z to the principal axes
of the nqcc tensor. Øz,CCl (degrees) is the angle between the principal z-axis of the nqcc tensor and the CCl bond axis. ETA = (Xxx - Xyy)/Xzz. |
|
|
RMS is the root mean square
difference between calculated and experimental diagonal nqcc's
(percentage of the average of the magnitudes of the experimental
nqcc's). RSD is the calibration residual standard deviation of
the B1LYP/TZV(3df,3p) model for calculation of the chlorine efg's/nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. 35Cl
nqcc's in CHF35Cl2
(MHz). Calculation was made (1) on the ro-like structure [1], and (2) on the ropt = CCSD(T)_AE/wCVQZ optimization structure [3].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. (1)
|
|
Calc. (2) |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
40.97 |
- |
41.35 |
- |
40.8921(19) |
|
Xbb |
|
10.85 |
|
11.42 |
|
11.4127(30) |
|
Xcc |
|
30.11 |
|
29.92 |
|
29.4794(30) |
|
Xab |
± |
45.57 |
± |
45.05 |
± |
44.63(43) |
|
|
Xac |
± |
25.73 |
± |
26.05 |
± |
26.18(96) |
|
|
Xbc |
- |
13.83 |
- |
13.74 |
- |
13.63(51) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.49 (1.8 %) |
0.37 (1.3 %) |
|
|
|
RSD |
|
0.49 (1.1 %) |
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
36.74 |
|
36.61 |
|
36.19(92) |
|
|
Xyy |
|
38.80 |
|
38.79 |
|
38.6(12) |
|
|
Xzz |
- |
75.54 |
- |
75.40 |
- |
74.81(91) |
|
|
ETA |
|
0.027 |
|
0.029 |
|
|
|
|
Øz,CCl |
|
1.09 |
|
1.15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Chlorine
nqcc's in CHF35Cl37Cl
(MHz). Calculation was made (1) on the ro-like structure [1], and (2) on the ropt = CCSD(T)_AE/wCVQZ optimization structure [3]. |
|
|
|
|
|
|
|
|
|
|
|
35Cl
|
|
Calc. (1)
|
|
Calc. (2) |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
39.36 |
- |
39.75 |
- |
39.3009(67) |
|
Xbb |
|
9.27 |
|
9.86 |
|
9.849(15) |
|
Xcc |
|
30.08 |
|
29.89 |
|
29.452(15) |
|
Xab |
- |
46.43 |
- |
45.93 |
|
|
|
|
Xac |
- |
25.52 |
- |
25.85 |
|
|
|
|
Xbc |
- |
14.29 |
- |
14.21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.49 (1.9 %) |
0.36 (1.4 %) |
|
|
|
RSD |
|
0.49 (1.1 %) |
0.49 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
37Cl |
|
Calc. (1) |
|
Calc. (2) |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
33.56 |
- |
33.82 |
- |
33.4548(78) |
|
|
Xbb |
|
9.77 |
|
10.18 |
|
10.165(15) |
|
|
Xcc |
|
23.79 |
|
23.64 |
|
23.290(15) |
|
|
Xab |
|
35.97 |
|
34.81 |
|
|
|
|
Xac |
|
18.99 |
|
20.62 |
|
|
|
|
Xbc |
- |
10.53 |
- |
10.43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.37 (1.7 %) |
0.29 (1.3 %) |
|
|
|
RSD |
|
0.44 (1.1 %) |
0.44 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. 37Cl
nqcc's in CHF37Cl2
(MHz). Calculation was made (1) on the ro-like structure [1], and (2) on the ropt = CCSD(T)_AE/wCVQZ optimization structure [3]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. (1)
|
|
Calc. (2) |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
Xaa |
- |
32.29 |
- |
32.59 |
- |
32.2262(20) |
|
Xbb |
|
8.52 |
|
8.97 |
|
8.9588(33) |
|
Xcc |
|
23.77 |
|
23.62 |
|
23.2674(33) |
|
Xab |
± |
35.95 |
± |
35.55 |
± |
35.36(41) |
|
|
Xac |
± |
20.22 |
± |
20.47 |
± |
19.3(12) |
|
|
Xbc |
- |
10.87 |
- |
10.81 |
- |
10.51(70) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.39 (1.8 %) |
0.29 (1.4 %) |
|
|
|
RSD |
|
0.44 (1.1 %) |
0.44 (1.1 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. Dichlorofluoromethane. Structure parameters (Å
and degrees). |
|
|
|
|
|
|
ro-like [1]
|
ropt [3] |
|
|
|
|
|
CCl |
1.764(2) |
1.7571
|
|
CF |
1.335(5) |
1.3436
|
|
CH |
1.09 (ass.)
|
1.0826
|
|
HCF |
110.0 (ass.)
|
109.587
|
|
FCCl |
109.6(2) |
109.342
|
|
ClCCl |
111.0(2) |
111.416
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 5. CHF35Cl2. Atomic coordinates, ro-like (top row) and ropt (bottom row) structures. |
|
|
|
|
|
|
|
|
|
|
|
|
|
a (Å) |
|
b (Å) |
|
c (Å) |
|
|
|
|
|
|
|
|
|
|
|
Cl |
± |
1.4538 |
- |
0.5019 |
- |
0.0533 |
|
|
|
± |
1.4517 |
- |
0.5000 |
- |
0.0539 |
|
|
F |
|
0.0 |
|
1.5840 |
- |
0.1497 |
|
|
|
|
0.0 |
|
1.5833 |
- |
0.1485 |
|
|
C |
|
0.0 |
|
0.3773 |
|
0.4213 |
|
|
|
|
0.0 |
|
0.3674 |
|
0.4232 |
|
|
H |
|
0.0 |
|
0.4784 |
|
1.5066 |
|
|
|
|
0.0 |
|
0.4730 |
|
1.5001 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] A.deLuis, J.C.López, A.Guarnieri, and J.L.Alonso, J.Mol.Struct. 413-414,249(1997). |
|
|
[2] J.C.López, A.deLuis, S.Blanco, A.Lessari, and J.L.Alonso, J.Mol.Struct. 612,287(2002). |
|
|
[3] N.Vogt, J.Demaison, and H.D.Rudolph, Mol.Phys. 112,2873(2014).
|
|
|
|
|
|
|
|
|
|
|
|
|
D.B.McLay, Can.J.Phys. 42,720(1964): For CHF35Cl2 species; Xaa = -41.0(2) MHz, Xbb = 11.37(13) MHz, and Xcc = 29.62(13) MHz.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CH3Cl |
CH2Cl2 |
CHCl3 |
CH2FCl |
|
|
CF3Cl |
CF2Cl2 |
CFCl3 |
CHF2Cl |
|
|
Calculation of Cl Nuclear Quadrupole Coupling Constants on Approximate Equilibrium Structures of Cl,F-Methanes: Gaussian. |
|
|
Calculation of Cl Nuclear Quadrupole Coupling Constants on Approximate Equilibrium Structures of Cl,F-Methanes: GAMESS. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Chlorine |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CHFCl2.html |
|
|
|
|
|
|
Last
Modified 5 July 2014 |
|
|
|
|
|
|
|
|
|
|