|
|
|
|
|
|
|
|
|
|
|
|
Calculation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
All
calculations
were made using GAUSSIAN 98
and/or 03
[22].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A
computational
model consists of a theoretical method and basis set. The DFT
methods investigated for calibration include the following:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B3LYP
Becke's three parameter hybrid functional [23] with the correlation
functional of Lee, Yang, and Parr [24,25].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B3P86
Becke's three parameter hybrid functional with the correlation
functional of Perdew [26].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B3PW91
Becke's three parameter hybrid functional with the correlation
functional of Perdew and Wang [27-28].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B1LYP
Becke's one parameter hybrid functional with the correlation functional
of Lee, Yang, and Parr as implemented by Adamo and Barone [29,30].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mPW1PW91
Barone and Adamo's Becke-style one parameter functional with modified
Perdew-Wang exchange and Perdew-Wang 91 correlation [31].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PBE1PBE
Perdew, Burke, and Ernzerhof [32].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B98
Becke's
revision to B97 [33].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B971
Handy,
Tozer, et al. modifications to B97 [34].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B972
Wilson,
Bradley, and Tozer modifications to B97 [35].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Basis
sets used
include Pople 6-31G and 6-311G [36], Ahlrichs TZV [37]
and Dunning
aug-cc-pVXZ [38]. Ahlrichs' bases are here augmented with
Pople-type
diffuse and polarization functions. That is, the diffuse and
polarization
functions developed for use with the 6-311G bases are used also with
the
TZV bases. For details and additional references concerning
these
and other bases, see EMSL.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
All
DFT
calculations were made using the tight convergence option and default
integration
grid size. Tight convergence is 10**(-8) for the root mean
square
density matrix, and 10**(-6) for the maximum density matrix.
The
default integration grid consists of 75 radial shells with 302 angular
points per shell, which is pruned to about 7000 points per atom.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Previous page
|
|
|
|
Next page
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[22]
M.J.Frisch,
G.W.Trucks, H.B.Schlegel, G. E. Scuseria, M. A. Robb,
J.R.Cheeseman, V.G.Zakrzewski, J.A.Montgomery, Jr., R.E.Stratmann,
J.C.Burant, S.Dapprich, J.M.Millam, A.D.Daniels, K.N.Kudin, M.C.Strain,
O.Farkas, J.Tomasi, S.Clifford, J.Ochterski, G.A.Petersson, P.Y.Ayala,
Q.Cui, K.Morokuma, D.K.Malik, A.D.Rabuck, K.Raghavachari, J.B.Foresman,
J.Cioslowski, J.V.Ortiz, A.G.Banoul, B.B.Stefanov, G.Liu, A.Liashenko,
P.Piskorz, I.Komaromi, R.Gomperts, R.L.Martin, D.J.Fox, T.Keith,
M.A.Al-Laham, C.Y.Peng, A.Nanayakkara, M.Challacombe, P.M.W.Gill,
B.Johnson, W.Chen, M.W.Wong, J.L.Andres, C.Gonzalez, H.Head-Gordon,
E.S.Replogle, and J.A.Pople, Gaussian 98, Revision A.9; Gaussian 03,
Revision C.02,
Gaussian Inc., Pittsburgh, PA, 1995.
|
|
|
[23]
A.D.Becke,
J.Chem.Phys. 98,5648(1993).
|
|
|
[24]
C.Lee,
W.Yang, and R.G.Parr, Phys.Rev.B 37,785(1988).
|
|
|
[25]
B.Miehlich,
A.Savin, H.Stoll, and H.Preuss, Chem.Phys.Lett. 157,200 (1989).
|
|
|
[26]
J.P.Perdew,
Phys.Rev.B 33,8822(1986).
|
|
|
[27]
K.Burke,
J.P.Perdew, and Y.Wang, Electronic
Density Functional Theory:
Recent Progress and New Directions,
ed. J.F.Donson, G.Vignale, and
M.P.Das (Plenum 1998).
|
|
|
[28]
J.P.Perdew,
K.Burke, and Y.Wang, Phys.Rev.B 54,16533(1996).
|
|
|
[29]
A.D.Becke,
J.Chem.Phys. 104,1040(1996).
|
|
|
[30]
C.Adamo and
V.Barone, Chem.Phys.Lett. 274,242(1997).
|
|
|
[31]
C.Adamo and
V.Barone, J.Chem.Phys. 108,664(1998).
|
|
|
[32]
J.P.Perdew,
K.Burke, and M.Ernzerhof, Phys.Rev.Lett. 78,1396(1997).
|
|
|
[33]
H.L.Schmider
and A.D.Becke, J.Chem.Phys. 108,9624(1998).
|
|
|
[34]
F.A.Hamprecht,
A.J.Cohen, D.J.Tozer, and N.C.Handy, J.Chem.Phys. 109,6264(1998).
|
|
|
[35]
P.J.Wilson,
T.J.Bradley,
and D.J.Tozer, J.Chem.Phys. 115,9233(2001).
|
|
|
[36]
W.J.Hehre,
L.Random, P.v.R.Schleyer, and J.A.Pople, Ab Initio Molecular Orbital
Theory (Wiley, New York, 1986).
|
|
|
[37]
A.Schäfer, C.Huber, and R.Ahlrichs, J.Chem.Phys.
100,5829(1994).
|
|
|
[38]
A.Wilson,
T.vanMourik, and T.H.Dunning Jr. J.Mol.Struct. (Theochem)
388,339(1997),
and references therein.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table
of Contents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|