Calculation

















All calculations were made using GAUSSIAN 98 and/or 03  [22].













A computational model consists of a theoretical method and basis set.  The DFT methods investigated for calibration include the following:














B3LYP     Becke's three parameter hybrid functional [23] with the correlation functional of Lee, Yang, and Parr [24,25].














B3P86     Becke's three parameter hybrid functional with the correlation functional of Perdew [26].














B3PW91     Becke's three parameter hybrid functional with the correlation functional of Perdew and Wang [27-28].














B1LYP     Becke's one parameter hybrid functional with the correlation functional of Lee, Yang, and Parr as implemented by Adamo and Barone [29,30].














mPW1PW91     Barone and Adamo's Becke-style one parameter functional with modified Perdew-Wang exchange and Perdew-Wang 91 correlation [31].














PBE1PBE     Perdew, Burke, and Ernzerhof [32].














B98    Becke's revision to B97 [33].














B971    Handy, Tozer, et al. modifications to B97 [34].














B972    Wilson, Bradley, and Tozer modifications to B97 [35].













Basis sets used include Pople 6-31G and 6-311G [36], Ahlrichs TZV [37] and Dunning aug-cc-pVXZ [38].  Ahlrichs' bases are here augmented with Pople-type diffuse and polarization functions.  That is, the diffuse and polarization functions developed for use with the 6-311G bases are used also with the TZV bases.  For details and additional references concerning these and other bases, see EMSL.













All DFT calculations were made using the tight convergence option and default integration grid size.  Tight convergence is 10**(-8) for the root mean square density matrix, and 10**(-6) for the maximum density matrix.  The default integration grid consists of 75 radial shells with 302 angular points per shell, which is pruned to about 7000 points per atom.













Previous page



Next page



































References


















[22] M.J.Frisch, G.W.Trucks, H.B.Schlegel,  G. E. Scuseria, M. A. Robb, J.R.Cheeseman, V.G.Zakrzewski, J.A.Montgomery, Jr., R.E.Stratmann, J.C.Burant, S.Dapprich, J.M.Millam, A.D.Daniels, K.N.Kudin, M.C.Strain, O.Farkas, J.Tomasi, S.Clifford, J.Ochterski, G.A.Petersson, P.Y.Ayala, Q.Cui, K.Morokuma, D.K.Malik, A.D.Rabuck, K.Raghavachari, J.B.Foresman, J.Cioslowski, J.V.Ortiz, A.G.Banoul, B.B.Stefanov, G.Liu, A.Liashenko, P.Piskorz, I.Komaromi, R.Gomperts, R.L.Martin, D.J.Fox, T.Keith, M.A.Al-Laham, C.Y.Peng, A.Nanayakkara, M.Challacombe, P.M.W.Gill, B.Johnson, W.Chen, M.W.Wong, J.L.Andres, C.Gonzalez, H.Head-Gordon, E.S.Replogle, and J.A.Pople, Gaussian 98, Revision A.9; Gaussian 03, Revision C.02, Gaussian Inc., Pittsburgh, PA, 1995.


[23] A.D.Becke, J.Chem.Phys. 98,5648(1993).


[24] C.Lee, W.Yang, and R.G.Parr, Phys.Rev.B 37,785(1988).


[25] B.Miehlich, A.Savin, H.Stoll, and H.Preuss, Chem.Phys.Lett. 157,200 (1989).


[26] J.P.Perdew, Phys.Rev.B 33,8822(1986).


[27] K.Burke, J.P.Perdew, and Y.Wang, Electronic Density Functional Theory: Recent Progress and New Directions, ed. J.F.Donson, G.Vignale, and M.P.Das (Plenum 1998).


[28] J.P.Perdew, K.Burke, and Y.Wang, Phys.Rev.B 54,16533(1996).


[29] A.D.Becke, J.Chem.Phys. 104,1040(1996).


[30] C.Adamo and V.Barone, Chem.Phys.Lett. 274,242(1997).


[31] C.Adamo and V.Barone, J.Chem.Phys. 108,664(1998).


[32] J.P.Perdew, K.Burke, and M.Ernzerhof, Phys.Rev.Lett. 78,1396(1997).


[33] H.L.Schmider and A.D.Becke, J.Chem.Phys. 108,9624(1998).


[34] F.A.Hamprecht, A.J.Cohen, D.J.Tozer, and N.C.Handy, J.Chem.Phys. 109,6264(1998).


[35] P.J.Wilson, T.J.Bradley, and D.J.Tozer, J.Chem.Phys. 115,9233(2001).


[36] W.J.Hehre, L.Random, P.v.R.Schleyer, and J.A.Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).


[37] A.Schäfer, C.Huber, and R.Ahlrichs, J.Chem.Phys. 100,5829(1994).


[38] A.Wilson, T.vanMourik, and T.H.Dunning Jr. J.Mol.Struct. (Theochem) 388,339(1997), and references therein.













Table of Contents
































Intro_p3n.html

Last modified 26 May 2004