|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C6H5CCH-d1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Deuterium |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
|
in Phenylacetylene-d1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Deuterium nqcc's were measured in phenylacetylene-d1
by Dreizler et al. [1], who also determined a number of experimental and
theoretical molecular structures. |
|
|
|
|
|
|
|
|
|
|
|
|
Calculation was made here of the deuterium
nqcc's on the experimental rm(2) and
theoretical CCSD(T)/cc-pVTZ molecular structures of Ref. [1], and
on a structure determined here by B3P86/6-31G(3d,3p)
optimization. In
Tables 1 - 3, calculated nqcc's are compared with the experimental
values.
In Table 4, the principal values of the nqcc tensors calculated on the
B3P86 ropt structure are collected for easy comparison. Structure parameters
are compared in Table 5. |
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 - 3, subscripts a,b,c
refer to the principal axes of the inertia tensor, subscripts
x,y,z to the principal axes of the nqcc tensor. The nqcc y-axis
is chosen coincident with the inertia c-axis, these are perpendicular
to the plane of the molecule. Ø (degrees) is the angle
between its subscripted parameters. ETA = (Xxx - Xyy)/Xzz. |
|
|
RMS is the root mean square
difference between calculated and experimental inertia axes nqcc's (percentage
of the average of the magnitudes of the experimental nqcc's). RSD
is the calibration residual standard deviation for the B3LYP/6-31G(df,3p)
model for calculation of the nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. Deuterium
nqcc's in C6H5CCH-d1 (kHz). Calculation was made on
the rm(2) structure [1].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
2H(4) |
Xaa |
|
194.8 |
|
188.9(10) |
|
|
|
Xbb |
|
- 92.1 |
|
- 92.2(35) |
|
|
|
Xcc |
- |
102.8 |
|
- 96.7(35) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
4.9 (3.9 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H(3) |
Xaa |
|
- 15.8 |
|
- 28.7(21) |
|
|
|
Xbb |
|
117.6 |
|
117.9(32) |
|
|
|
Xcc |
- |
101.7 |
|
- 89.2(32) |
|
|
|
|Xab| |
|
125.3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
10.4 (13.2 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H(2) |
Xaa |
|
- 19.3 |
|
- 31.7(15) |
|
|
|
Xbb |
|
123.1 |
|
125.1(21) |
|
|
|
Xcc |
- |
103.8 |
|
- 93.5(21) |
|
|
|
|Xab| |
|
125.6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
9.4 (11.2 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H(8) * |
Xaa |
|
226.4 |
|
207.6(10) |
|
|
|
Xbb |
- |
112.7 |
- |
103.9(30) |
|
|
|
Xcc |
- |
113.7 |
- |
103.7(30) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
13.3 (9.6 %) |
|
|
|
|
|
RSD |
|
1.1 (0.9 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Acetylenic. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Deuterium
nqcc's in C6H5CCH-d1 (kHz). Calculation was made on the CCSD(T)/cc-pVTZ structure [1].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
2H(4) |
Xaa |
|
191.2 |
|
188.9(10) |
|
|
|
Xbb |
|
- 90.2 |
|
- 92.2(35) |
|
|
|
Xcc |
- |
100.9 |
|
- 96.7(35) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
3.0 (2.4 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H(3) |
Xaa |
|
- 16.0 |
|
- 28.7(21) |
|
|
|
Xbb |
|
116.9 |
|
117.9(32) |
|
|
|
Xcc |
- |
100.9 |
|
- 89.2(32) |
|
|
|
|Xab| |
|
123.9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
10.0 (12.7 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H(2) |
Xaa |
|
- 17.6 |
|
- 31.7(15) |
|
|
|
Xbb |
|
118.2 |
|
125.1(21) |
|
|
|
Xcc |
- |
100.6 |
|
- 93.5(21) |
|
|
|
|Xab| |
|
122.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
9.9 (11.9 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H(8) |
Xaa |
|
214.7 |
|
207.6(10) |
|
|
|
Xbb |
- |
106.8 |
- |
103.9(30) |
|
|
|
Xcc |
- |
107.8 |
- |
103.7(30) |
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
5.0 (3.6 %) |
|
|
|
|
|
RSD |
|
1.1 (0.9 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. Deuterium
nqcc's in C6H5CCH-d1 (kHz). Calculation was made on
the B3P86/6-31G(3d,3p) ropt structure.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [1] |
|
|
|
|
|
|
|
|
|
|
2H(4) |
Xaa (zz) |
|
188.9 |
|
188.9(10) |
|
|
|
Xbb (xx) |
|
- 89.1 |
|
- 92.2(35) |
|
|
|
Xcc (yy) |
|
- 99.7 |
|
- 96.7(35) |
|
|
|
ETA |
|
0.056 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
2.5 (2.0 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H(3) |
Xaa |
|
- 15.6 |
|
- 28.7(21) |
|
|
|
Xbb |
|
115.3 |
|
117.9(32) |
|
|
|
Xcc |
|
- 99.7 |
|
- 89.2(32) |
|
|
|
|Xab| |
|
122.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
9.8 (12.5 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
- 89.0 |
|
|
|
|
|
Xyy |
|
- 99.7 |
|
|
|
|
|
Xzz |
|
188.8 |
|
|
|
|
|
ETA |
|
0.057 |
|
|
|
|
|
Øz,a |
|
59.06 |
|
|
|
|
|
Øa,CD |
|
59.07 |
|
|
|
|
|
Øz,CD |
|
0.01 |
|
|
|
|
|
|
|
|
|
|
|
|
2H(2) |
Xaa |
|
- 17.5 |
|
- 31.7(15) |
|
|
|
Xbb |
|
117.3 |
|
125.1(21) |
|
|
|
Xcc |
|
- 99.8 |
|
- 93.5(21) |
|
|
|
|Xab| |
|
120.9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
10.0 (12.0 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
- 88.6 |
|
|
|
|
|
Xyy |
|
- 99.8 |
|
|
|
|
|
Xzz |
|
188.3 |
|
|
|
|
|
ETA |
|
0.059 |
|
|
|
|
|
Øz,a |
|
59.56 |
|
|
|
|
|
Øa,CD |
|
59.36 |
|
|
|
|
|
Øz,CD |
|
0.20 |
|
|
|
|
|
|
|
|
|
|
|
|
2H(8) |
Xaa (zz) |
|
212.2 |
|
207.6(10) |
|
|
|
Xbb (xx) |
- |
105.6 |
- |
103.9(30) |
|
|
|
Xcc (yy) |
- |
106.6 |
- |
103.7(30) |
|
|
|
ETA |
|
0.005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
3.3 (2.4 %) |
|
|
|
|
|
RSD |
|
1.1 (0.9 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. Principal
values of the deuterium nqcc tensor calculated on the B3P86/6-31G(3d,3p)
optimized structures of phenylacetylene (PhA), fluorobenzene (FB), and benzene.
(kHz and degrees) |
|
|
|
|
|
|
|
|
|
Xzz |
Xyy |
Xxx |
ETA |
Øz,CD |
|
|
|
|
|
|
|
|
C6H5D |
189.0 |
-99.9 |
-89.1 |
0.057 |
0 |
|
|
|
|
|
|
|
|
PhA D(4) |
188.9 |
-99.7 |
-89.1 |
0.056 |
0 |
|
FB D(4) |
190.0 |
-101.1 |
-88.8 |
0.065 |
0 |
|
|
|
|
|
|
|
|
PhA D(3) |
188.8 |
-99.7 |
-89.0 |
0.057 |
0.01 |
|
FB D(3) |
188.7 |
-99.6 |
-89.2 |
0.055 |
0.03 |
|
|
|
|
|
|
|
|
PhA D(2) |
188.3 |
-99.8 |
-88.6 |
0.059 |
0.20 |
|
FB D(2) |
190.0 |
-100.8 |
-89.2 |
0.061 |
0.29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The "bond bending" seen in D(2) compared with D(3) recalls that seen
in chlorofluorobenzene (CFB). In 1,3-CFB, Øz,CCl
is 0.06o. In 1,2-CFB, it is 1.07o. Otherwise,
the substituent has little - if any - effect on the deuterium coupling. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 5. Phenylacetylene. Molecular structure parameters (Å
and degrees). |
|
|
|
|
|
|
|
rm(2) * |
ropt ** |
ropt *** |
|
|
|
|
|
|
C(8)H(8) |
1.0546 |
1.0635 |
1.0654 |
|
C(7)C(8) |
1.2074 |
1.2136 |
1.2073 |
|
C(1)C(7) |
1.4446 |
1.4372 |
1.4232 |
|
C(1)C(2) |
1.3928 |
1.4044 |
1.4011 |
|
C(2)C(3) |
1.3953 |
1.3946 |
1.3872 |
|
C(3)C(4) |
1.3956 |
1.3976 |
1.3910 |
|
C(2)H(2) |
1.0771 |
1.0826 |
1.0840 |
|
C(3)H(3) |
1.0814 |
1.0829 |
1.0849 |
|
C(4)H(4) |
1.0796 |
1.0828 |
1.0848 |
|
C(6)C(1)C(2) |
120.70 |
119.45 |
119.15 |
|
C(1)C(2)C(3) |
119.53 |
120.13 |
120.25 |
|
C(2)C(3)C(4) |
120.22 |
120.21 |
120.25 |
|
C(3)C(4)C(5) |
119.81 |
119.86 |
119.86 |
|
C(1)C(2)H(2) |
120.19 |
119.27 |
119.14 |
|
C(2)C(3)H(3) |
119.98 |
120.10 |
120.06 |
|
|
|
|
|
|
* Ref. [1], Table 12. rm(2) mod IRLS. |
|
** Ref. [1], Table 17. CCSD(T)/cc-pVTZ
optimized structure. |
|
*** B3P86/6-31G(3d,3p) optimized structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] H.Driezler, H.D.Rudolph, and B.Hartke,
J.Mol.Struct. 698,1(2004). |
|
|
|
|
|
|
|
|
|
|
|
|
"Accurate Determination of the Deformation of the Benzene Ring upon
Substitution: Equilibrium Structures of Benzonitrile and
Phenylacetylene" H.D.Rudolph, J.Demaison, and A.G.Császár,
J.Phys.Chem. A 117(48),12969(2013). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Benzene-d1 |
Fluorobenzene-d1 |
Pyridine-4D |
|
1,2-Chlorofluorobenzene |
1,3-Chlorofluorobenzene |
|
|
Acetylenes |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Deuterium |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C6H5CCH.html |
|
|
|
|
|
|
Last
Modified 17 Jan 2005 |
|
|
|
|
|
|
|
|
|
|