H2C=O
PDF




























 









Deuterium and Oxygen


Nuclear Quadrupole Coupling Constants


in Formaldehyde


 








 








 








Deuterium [1,3] and 17O [2,4,5] nqcc's have been measured in formaldehyde by Tucker and Tomasevich [1], Müller and Lewen [2], Flygare [3], Cornet, Landsberg, and Winnewisser [4], and Flygare and Lowe [5].  Equilibrium molecular structures were reported by Carter and Handy [6] and Yamada, Nakagawa, Kutchitsu, and Morino [7].

 








Calculation was made here of the deuterium and oxygen nqcc's on the equilibrium structure of Yamada et al.  These calculated nqcc's are compared with the experimental values in Tables 1 - 3.  Structure parameters [6,7] are compared in Table 4.

 


 





In Table 1, the subscripts a,b,c refer to the principal axes of the inertia tensor, the subscripts x,y,z to the principal axes of the nqcc tensor.  The nqcc y-axis is chosen coincident with the inertia c-axis.  Ø (degrees) is the angle between its subscripted parameters.  ETA = (Xxx - Xyy)/Xzz.

 








 








   







Table 1.  Deuterium nqcc's in D2C=O (kHz).  Calculation was made on the equilibrium structure of Yamada et al. [6].
   










Calc.
Expt. [1]
   







2H Xaa
- 13.9
- 12.53(10)


Xbb
   97.1
   97.23(10)


Xcc
- 83.2
- 84.70(10)


Xbc ± 113.7 ± 107(2)

 







RMS
1.2 (1.8 %)




RSD
1.1 (0.9 %)



 







Xxx
- 84.9




Xyy
- 83.2




Xzz
168.1




ETA - 0.010




Øz,b
58.00




Øb,CD
58.38




Øz,CD
  0.38



 







 








 







 
   








Table 2.  17O nqcc's in H2C=O (MHz).  Calculation was made on the equilibrium structure of Yamada et al. [6].

 







Calc. = B1LYP/6-311++G(3df,3p).



 









Calc.
Expt. [1]
Expt. [2]
   








Xaa
- 1.937
- 1.900(118)
- 1.903(16)


Xbb
12.408
12.35(52)
12.381(10)


Xcc - 10.470 - 10.45(48) -
10.478 (10)


 







RMS


0.041 (0.50 %)
0.026 (0.31 %)


RSD


0.041 (1.4 %)
0.041 (1.4 %)

 








 








 








   








Table 3.  17O nqcc's in H2C=O (MHz).  Calculation was made on the equilibrium structure of Yamada et al. [6].

 







Calc. = MP4(SDQ)/6-311++G(3df,3pd).



 









Calc.
Expt. [1]
Expt. [2]
   








Xaa
- 1.893
- 1.900(118)
- 1.903(16)

Xbb
12.325
12.35(52)
12.381(10)

Xcc - 10.431 - 10.45(48) -
10.478 (10)

 







RMS


0.018 (0.22 %)
0.043 (0.52 %)

RSD


0.022 (0.77 %)
0.022 (0.77 %)

 








 








 












Table 4.  Molecular structure parameters (Å and degrees).






re [6] re [7]





CH 1.1003(5) 1.099(9)

CO 1.2031 1.203

HCO 121.62 121.75


   








 








[1] K.D.Tucker and G.R.Tomasevich,  J.Mol.Spectrosc. 48,475(1973).

[2] H.S.P.Müller and F.Lewen, J.Mol.Spectrosc. 331,28(2017).


[3] W.H.Flygare, J.Chem.Phys. 41,206(1964).

[4] R.Cornet, B.M.Landsberg, and G.Winnewisser, J.Mol.Spectrosc. 82,253(1980).

[5] W.H.Flygare and J.T.Lowe, J.Chem.Phys. 43,3645(1965).

[6] S.Carter and N.C.Handy, J.Mol.Spectrosc. 179,65(1996).

[7] K.Yamada, T.Nakagawa, K.Kuchitsu, and Y.Morino, J.Mol.Spectrosc. 38,70(1971). 

 








"The accurate determination of molecular equilibrium structures" K.L.Bak, J.Gauss, P.Jørgensen, J.Olsen, T.Helgator, and J.F.Stanton, J.Mol.Spectrosc. 114,6548(2001).   re(HC) = 1.1007 Å,  re(CO) = 1.2047,  re(HCH) = 116.74o.

"The Ground State Rotational Spectra of HDCO and D2CO"  R.Bocquet, J.Demaison, J.Cosléou, A.Frriedrich, L.Margulès, S.Macholl, H.Mäder, M.M.Beaky, and G.Winnewiser, J.Mol.Spectrosc. 195,345(1999).


 








 








H2CS H2CCO D2O H2S

(CH3)2CO BH3CO HNCO CO

OCS OCSe CO2


 








 








Table of Contents




Molecules/Deuterium




Molecules/Oxygen

 








 













H2CO.html






Last Modified 9 Oct 2006