Methyls




 

 









Deuterium


Nuclear Quadrupole Coupling Constants


in Methane Derivatives


 








 


 





 








Calculated deuterium nqcc's in methane and methane derivatives are collected in Table 1.  CH Bond lengths are collected in Table 2.
 

 








In Table 1, Øz,CD (degrees) is the angle between the z-principal axis and the CD bond direction.  ETA = (Xxx - Xyy)/Xzz.
   








   









 
Table 1. Deuterium nqcc's, Methane Derivatives. 
 
References given after Xzz are for the structure on which the calculation was made.  Otherwise, the structure is referenced in Table 2.
 
Xzz /kHz ETA Øz,CD
 
CDH3 193.4(12) *   0   0
CDF3 167.7(154)   0   0
CDCl3 182.7(23)   0   0
 
CD2F2 179.9(34) - 0.038 0.2
CD2Cl2 181.4(13) [5] - 0.042 0.09
178.9 [6] - 0.043 0.09
187.2(35) [7] - 0.041 0.09
CD2Br2 182.2 - 0.034 0.25
CD2(CN)2 178.6 - 0.044 0.33
 
CD3F 182.7(22) 0.082 0.15
CD3Cl 184.9(57) [11] 0.062 0.07
187.0(6) [12] 0.062
186.2(46) [13] 0.061
CD3Br 190.3 0.046 0.15
CD3CN 187.2(34) 0.040 0.30
HCCCD3 186.9(11) 0.029 0.24
 


   








  * The estimated uncertainties in the calculated Xzz are due only to the uncertainties in the CH bond lengths (see Table 2). 

  








 







Calculations of the nqcc's shown in Table 1 were made on the experimental re structures shown in Table 2.  In Table 2, r(CH) = 1.001*ropt, where ropt is a MP2/6-31G(d,p) optimization [17].  These latter bond lengths are shown for comparison.
 
 
 
Table 2. CH Bond lengths, re and r (see above) (Å).  References are for the equilibrium bond lengths.
 
re(CH) r(CH) Ref.
 
CDH3 1.0858(10) 1.087 [1]
CDF3 1.091(14) 1.087 [2]
CDCl3 1.080(2) 1.084 [3]
 
CD2F2 1.084(3) 1.089 [4]
CD2Cl2 1.0851(11) 1.085 [5]
1.0874 [6]
1.080(3) [7]
CD2Br2 1.0845 1.083 [8]
CD2(CN)2 1.091 1.092 [9]
 
CD3F 1.088(2) 1.089 [10]
CD3Cl 1.0872(50) 1.086 [11]
1.0854(5) [12]
1.086(4) [13]
CD3Br 1.0823 1.084 [14]
CD3CN 1.087(3) 1.089 ]15]
HCCCD3 1.089(1) 1.090 [16]
 
 
 
 
[1] D.L.Gray and A.G.Robiette, Mol.Phys. 37,1901(1979).
[2] Y.Kawashima and A.P.Cox, J.Mol.Spectrosc. 72,423(1978).
[3] J.M.Colmont, D.Priem, P.Dréan, J.Demaison, and J.E.Boggs, J.Mol. Spectrosc. 191,158(1998).
[4] E.Hirota, J.Mol.Spectrosc. 71,145(1978).
[5] R.J.Berry and M.D.Harmony, Struct.Chem. 1,49(1989).  rmrho
[6] R.W.Davis, A.G.Robiette, and M.C.L.Gerry, J.Mol.Spectrosc. 85,399(1981).
[7] J.L.Duncan, J.Mol.Struct. 158,169(1987).
[8] R.W.Davis and M.C.L.Gerry, J.Mol.Spectrosc. 109,269(1985).
[9] J.Demaison, G.Wlodzrczak, H.Rück, K.H.Wiedenmann, H.D.Rudolph, J.Mol.Struct. 376,399(1996).
[10] M.M.Law, J.L.Duncan, and I.M.Mills, J.Mol.Struct. 260,323 (1992).
[11] M.Imachi, T.Tanaka, and E.Hirota, J.Mol.Spectrosc. 63,265(1976).
[12] P.Jensen, S.Brodersen, G.Guelachvili, J.Mol.Spectrosc. 88,378 (1981).
[13] J.L.Duncan, J.Mol.Spectrosc. 6,447(1970).
[14] G.Graner, J.Mol.Spectrosc. 90,394(1981).
[15] M.LeGuennec, G.Wlodarczak, J.Burie, and J.Demaison, J.Mol. Spectrosc. 154,305(1992).
[16] M.LeGuennec, J.Demaison, G.Wlodarczak, and C.J.Marsden, J.Mol.Spectrosc. 160,471(1993).
[17] J.Demaison and G.Wlodarczak, Structural Chem. 5,57(1994).
 
 

Table of Contents




Molecules/Deuterium




 








 













Methyls.html






Last modified 13 Aug 2003