|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Morpholine
|
|
|
OC4H8N-H
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Nitrogen and Deuterium |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
in Morpholine (chair, eq and ax)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calculation of
the
nitrogen nqcc's in equatorial and axial morpholine (chair) was made
here on molecular structures given by
MP2/6-311+G(2d,2p) optimization and, for the equatorial conformer, on
the effective structure of Indris, et al. [1]. These are
compared with the
experimental nqcc's for equatorial morpholine [1] in Tables 1 - 3.
Calculated nqcc's for the axial conformer are given in Tables 4
and 5. MP2/6-311+G(2d,2p) structure parameters are shown in Table
6, rotational
constants in Table 7.
|
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 - 4, subscripts a,b,c refer to the
principal axes of the inertia tensor; x,y,z to the principal axes
of the nqcc tensor. The nqcc y-axis is chosen coincident with the
inertia b-axis, these are perpendicular to the molecular symmetry plane.
Ø (degrees) is the angle between its subscripted
parameters. ETA = (Xxx - Xyy)/Xzz. |
|
|
|
|
|
|
|
|
|
|
|
|
RMS is the root mean square
difference between calculated and experimental nqcc's (percentage of the
average of the magnitudes of the experimental nqcc's). RSD is the
calibration residual standard deviation of the models for calculation of nitrogen and deuterium nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. Nitrogen nqcc's in Morpholine, equatorial (MHz). Calculation was made
on the MP2/6-311+G(2d,2p) optimized structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
14N |
Xaa |
|
2.210 |
|
2.1491(24) |
|
|
|
Xbb |
|
2.788 |
|
2.7966(25) |
|
|
|
Xcc |
- |
4.998 |
- |
4.9457(24) |
|
|
|
|Xac| |
|
0.735 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.046 (1.4 %) |
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
2.284 |
|
|
|
|
|
Xyy |
|
2.788 |
|
|
|
|
|
Xzz |
- |
5.072 |
|
|
|
|
|
ETA |
|
0.099 |
|
|
|
|
|
Øz,a |
|
84.24 |
|
|
|
|
|
Øa,NH |
|
15.44 |
|
|
|
|
|
Øz,NH |
|
68.79 |
|
|
|
|
|
Øz,NC |
|
72.33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Nitrogen and Deuterium nqcc's in N-Deutero-Morpholine, equatorial. Calculation was made
on the MP2/6-311+G(2d,2p) optimized structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
14N (MHz) |
Xaa |
|
2.210 |
|
2.166(6) |
|
|
|
Xbb |
|
2.788 |
|
2.787(4) |
|
|
|
Xcc |
- |
4.998 |
- |
4.953(6) |
|
|
|
|Xac| |
|
0.732 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.037 (1.1 %) |
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H (kHz) |
Xaa |
|
221.9 |
|
220(10) |
|
|
|
Xbb |
- |
102.2 |
- |
108(6) |
|
|
|
Xcc |
- |
119.7 |
- |
112(11) |
|
|
|
|Xac| |
|
96.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
5.7 (3.9 %) |
|
|
|
|
|
RSD |
|
1.1 (0.86 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
- |
144.9 |
|
|
|
|
|
Xyy |
- |
102.2 |
|
|
|
|
|
Xzz |
|
247.1 |
|
|
|
|
|
ETA |
- |
0.173 |
|
|
|
|
|
Øz,a |
|
14.68 |
|
|
|
|
|
Øa,ND |
|
15.47 |
|
|
|
|
|
Øz,ND |
|
0.79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. Nitrogen nqcc's in Morpholine, equatorial (MHz). Calculation was made
on the ro structure [1]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
14N |
Xaa |
|
2.279 |
|
2.1491(24) |
|
|
|
Xbb |
|
2.746 |
|
2.7966(25) |
|
|
|
Xcc |
- |
5.025 |
- |
4.9457(24) |
|
|
|
|Xac| |
|
0.364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.092 (2.8 %) |
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
2.297 |
|
|
|
|
|
Xyy |
|
2.746 |
|
|
|
|
|
Xzz |
- |
5.043 |
|
|
|
|
|
ETA |
|
0.089 |
|
|
|
|
|
Øz,a |
|
92.85 |
|
|
|
|
|
Øa,NH |
|
18.61 |
|
|
|
|
|
Øz,NH |
|
68.55 |
|
|
|
|
|
Øz,NC |
|
70.79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. Nitrogen nqcc's in Morpholine, axial (MHz). Calculation was made
on the MP2/6-311+G(2d,2p) optimized structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. |
|
|
|
|
|
|
|
|
|
|
14N |
Xaa |
- |
3.550 |
|
|
|
|
|
Xbb |
|
2.776 |
|
|
|
|
|
Xcc |
|
0.774 |
|
|
|
|
|
|Xac| |
|
0.656 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
2.303 |
|
|
|
|
|
Xyy |
|
2.776 |
|
|
|
|
|
Xzz |
- |
5.080 |
|
|
|
|
|
ETA |
|
0.093 |
|
|
|
|
|
Øz,a |
|
152.93 |
|
|
|
|
|
Øa,NH |
|
83.70 |
|
|
|
|
|
Øz,NH |
|
69.22 |
|
|
|
|
|
Øz,NC |
|
70.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 5. Nitrogen and Deuterium nqcc's in N-Deutero-Morpholine, axial. Calculation was made
on the MP2/6-311+G(2d,2p) optimized structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. |
|
|
|
|
|
|
|
|
|
|
14N (MHz) |
Xaa |
- |
3.419 |
|
|
|
|
|
Xbb |
|
2.776 |
|
|
|
|
|
Xcc |
|
0.642 |
|
|
|
|
|
|Xac| |
|
3.083 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H (kHz) |
Xaa |
- |
134.2 |
|
|
|
|
|
Xbb |
- |
100.1 |
|
|
|
|
|
Xcc |
|
234.2 |
|
|
|
|
|
|Xac| |
|
57.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RSD |
|
1.1 (0.86 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
- |
142.8 |
|
|
|
|
|
Xyy |
- |
100.1 |
|
|
|
|
|
Xzz |
|
234.2 |
|
|
|
|
|
ETA |
- |
0.176 |
|
|
|
|
|
Øz,a |
|
81.40 |
|
|
|
|
|
Øa,ND |
|
82.46 |
|
|
|
|
|
Øz,ND |
|
1.06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Energy: For the MP2/6-311+G(2d,2p) optimized structures, Eeq < Eax
by 1.04, 0.82, and 0.76 kcal/mol respectively at the
MP2/6-311+G(2d,2p), B3PW91/6-311+G(df,pd), and B3LYP/6-31G(df,3p)
levels of theory. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 6. Molecular structure parameters, MP2/6-311+G(2d,2p) ropt (Å
and degrees). |
|
|
|
|
|
|
Equatorial |
Axial |
Equatorial |
|
|
|
|
C(1)N |
1.4639 |
1.4661 |
NH |
1.0102 |
1.0134 |
C(1)C(2) |
1.5162 |
1.5202 |
C(2)O(3) |
1.4266 |
1.4264 |
C(1)H(8) |
1.0883 |
1.0888 |
|
C(1)H(9) |
1.0970 |
1.0899 |
Axial |
C(2)H(10) |
1.0937 |
1.0968 |
|
C(2)H(11) |
1.0858 |
1.0869 |
C(5)NC(1) |
109.89 |
109.97 |
NC(1)C(2) |
108.14 |
112.67 |
C(1)C(2)O(3) |
110.86 |
110.88 |
C(2)O(3)C(4) |
110.08 |
110.26 |
NC(1)H(8) |
109.26 |
109.12 |
|
NC(1)H(9) |
112.50 |
107.64 |
Dihedral angles? |
C(1)C(2)H(10) |
109.34 |
109.83 |
See Z-Matrix. |
C(1)C(2)H(11) |
111.18 |
111.60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 7. Morpholine. Rotational Constants (MHz). Normal Species. |
|
|
|
|
|
|
|
|
eq ropt |
eq Expt. [1] |
ax ropt |
ax Expt. |
|
|
|
|
|
|
|
A |
4952.4 |
4924.9875(53) |
4912.4 |
|
|
B |
4651.0 |
4625.1166(53) |
4608.0 |
|
|
C |
2702.0 |
2684.2359(54) |
2692.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] O.Indris, W.Stahl, and U.Kretschmer, J.Mol.Spectrosc. 190,372(1998). |
|
|
[2] J.-U.Grabow, H.Ehrlichmann, H.Dreizler, Z.Naturforsch. 44a,833(1989). |
|
|
|
|
|
|
|
|
|
|
|
|
J.J.Sloan and R.Kewley, Can.J.Chem. 47,3453(1969): In Morpholine, eq. Xaa = 2.22(2) MHz, Xbb = 2.51(5) MHz, Xcc = -4.73(2) MHz, and in N-Deuteromorpholine, eq. Xaa = 1.92(2) MHz, Xbb = 2.59(5) MHz, Xcc = -4.51(2) MHz.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Piperidine |
Pyridine
|
Pyrrolidine
|
Pyrrole
|
|
|
Dimethylamine | N-Methyl-Morpholine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Nitrogen |
|
|
|
|
|
Molecules/Deuterium |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Morpholine.html |
|
|
|
|
|
|
Last
Modified 21 Feb 2006 |
|
|
|
|
|
|
|
|
|
|