|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Piperidine
|
|
|
PDF equatorial
|
|
|
C5H10NH |
|
|
PDF axial |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Nitrogen and Deuterium |
|
|
|
Nuclear
Quadrupole Coupling Constants |
|
|
in Piperidine (chair, eq and ax)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calculation of the
nitrogen nqcc's in equatorial and axial piperidine (chair) was made here on ropt molecular structures given by
MP2/6-311+G(2d,2p) optimization. For the equatorial conformer, a semi-experimental equilibrium structure, reSE, was derived by Demaison et al [1]. Calculation was made also on this structure. These are compared with the
experimental nqcc's [2] in Tables 1 - 4. Structure parameters are given in Table 5, rotational constants in Table 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
In Tables 1 - 4, subscripts a,b,c refer to the
principal axes of the inertia tensor; x,y,z to the principal axes
of the nqcc tensor. The nqcc y-axis is chosen coincident with the
inertia b-axis, these are perpendicular to the molecular symmetry plane.
Ø (degrees) is the angle between its subscripted
parameters. ETA = (Xxx - Xyy)/Xzz. |
|
|
|
|
|
|
|
|
|
|
|
|
RMS is the root mean square
difference between calculated and experimental nqcc's (percentage of the
average of the magnitudes of the experimental nqcc's). RSD is the
calibration residual standard deviation of the models for calculation of nitrogen and deuterium efg's/nqcc's. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 1. Nitrogen nqcc's in Piperidine, equatorial (MHz). Calculation was made
on the ropt and reSE molecular structures. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc /ropt |
|
Calc /reSE |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
|
14N |
Xaa |
|
2.152 |
|
2.180
|
|
2.1007(42) |
|
|
|
Xbb |
|
2.738 |
|
2.724
|
|
2.7557(33) |
|
|
|
Xcc |
- |
4.890 |
-
|
4.904
|
- |
4.8564(39) |
|
|
|
|Xac| |
|
0.908 |
|
0.865
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.037 (1.1 %) |
|
0.056 (1.7 %)
|
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
2.268 |
|
2.283
|
|
|
|
|
|
Xyy |
|
2.738 |
|
2.724
|
|
|
|
|
|
Xzz |
- |
5.005 |
-
|
5.008
|
|
|
|
|
|
ETA |
|
0.094 |
|
0.088
|
|
|
|
|
|
Øz,a |
|
97.23 |
|
96.86
|
|
|
|
|
|
Øa,NH |
|
13.52 |
|
13.68
|
|
|
|
|
|
Øz,NH |
|
110.76 |
|
110.54
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 2. Nitrogen and Deuterium nqcc's in N-Deutero-Piperidine, equatorial. Calculation was made
on the on the ropt and reSE molecular structures. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc /ropt |
|
Calc /reSE |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
|
|
14N /MHz
|
Xaa |
|
2.155 |
|
2.182
|
|
2.122(6) |
|
|
|
Xbb |
|
2.738 |
|
2.724
|
|
2.743(5) |
|
|
|
Xcc |
- |
4.893 |
-
|
4.906
|
- |
4.865(7) |
|
|
|
|Xac| |
|
0.898 |
|
0.855
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.025 (0.77 %) |
|
0.043 (1.3 %)
|
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2H /kHz
|
Xaa |
|
227.7 |
|
225.9
|
|
232(9) |
|
|
|
Xbb |
- |
101.9 |
-
|
101.1
|
- |
117(9) |
|
|
|
Xcc |
- |
125.8 |
-
|
124.8
|
- |
115(15) |
|
|
|
|Xac| |
|
84.6 |
|
84.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
11.0 (9.5 %) |
|
11.5 (10. %)
|
|
|
|
|
|
RSD |
|
1.1 (0.86 %) |
|
1.1 (0.86 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
- |
145.0 |
-
|
144.2
|
|
|
|
|
|
Xyy |
- |
101.9 |
-
|
101.1 |
|
|
|
|
|
Xzz |
|
246.9 |
|
245.3
|
|
|
|
|
|
ETA |
- |
0.174 |
|
0.176
|
|
|
|
|
|
Øz,a |
|
12.78 |
|
12.91
|
|
|
|
|
|
Øa,ND |
|
13.61 |
|
13.76
|
|
|
|
|
|
Øz,ND |
|
0.83 |
|
0.84
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3. Nitrogen nqcc's in Piperidine, axial (MHz). Calculation was made
on the MP2/6-311+G(2d,2p) optimized structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
14N |
Xaa |
- |
3.740 |
- |
3.6763(11) |
|
|
|
Xbb |
|
2.790 |
|
2.8013(12) |
|
|
|
Xcc |
|
0.951 |
|
0.8750(16) |
|
|
|
|Xac| |
|
2.900 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.058 (2.4 %) |
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
|
2.336 |
|
|
|
|
|
Xyy |
|
2.790 |
|
|
|
|
|
Xzz |
- |
5.125 |
|
|
|
|
|
ETA |
|
0.088 |
|
|
|
|
|
Øz,a |
|
25.52 |
|
|
|
|
|
Øa,NH |
|
95.37 |
|
|
|
|
|
Øz,NH |
|
69.85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4. Nitrogen and Deuterium nqcc's in N-Deutero-Piperidine, axial. Calculation was made
on the MP2/6-311+G(2d,2p) optimized structure. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Calc. |
|
Expt. [2] |
|
|
|
|
|
|
|
|
|
|
14N (MHz) |
Xaa |
- |
3.617 |
- |
3.578(7) |
|
|
|
Xbb |
|
2.790 |
|
2.806(5) |
|
|
|
Xcc |
|
0.828 |
|
0.772(8) |
|
|
|
|Xac| |
|
2.996 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
0.040 (1.7 %) |
|
|
|
|
|
RSD |
|
0.030 (1.3 %) |
|
|
|
|
|
|
|
|
|
|
|
|
2H (kHz) |
Xaa |
- |
137.0 |
- |
147(12) |
|
|
|
Xbb |
- |
100.1 |
- |
101(10) |
|
|
|
Xcc |
|
237.1 |
|
248(9) |
|
|
|
|Xac| |
|
50.7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
RMS |
|
8.5 (5.2 %) |
|
|
|
|
|
RSD |
|
1.1 (0.86 %) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Xxx |
- |
143.8 |
|
|
|
|
|
Xyy |
- |
100.1 |
|
|
|
|
|
Xzz |
|
243.9 |
|
|
|
|
|
ETA |
- |
0.179 |
|
|
|
|
|
Øz,a |
|
97.58 |
|
|
|
|
|
Øa,ND |
|
96.56 |
|
|
|
|
|
Øz,ND |
|
1.01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Energy: Eeq < Eax
by 0.93, 0.70, and 0.75 kcal/mol respectively at the
MP2/6-311+G(2d,2p), B3PW91/6-311+G(df,pd), and B3LYP/6-31G(df,3p)
levels of theory. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 5. Selected molecular structure parameters, MP2/6-311+G(2d,2p) ropt and reSE [1] (Å
and degrees). Complete ropt structures are given here in Z-Matirx format.
|
|
|
|
|
|
|
|
Eq /ropt |
Eq /reSE |
Ax /ropt |
Equatorial |
|
|
|
|
|
C(1)N |
1.4637 |
1.4589(2)
|
1.4650 |
NH |
1.0107 |
1.0116(3) |
1.0131 |
C(1)C(2) |
1.5232 |
1.5212(2)
|
1.5292 |
C(2)C(3) |
1.5284 |
1.5255(2)
|
1.5283 |
C(1)H(10) |
1.0879 |
1.0897(5)
|
1.0882 |
|
C(1)H(11) |
1.1004 |
1.1020(5)
|
1.0922 |
|
C(2)H(12) |
1.0901 |
1.0918(5)
|
1.0925 |
Axial |
C(2)H(13) |
1.0894 |
1.0909(5)
|
1.0903 |
|
C(3)H(8) |
1.0926 |
1.0943(5)
|
1.0927 |
C(3)H(9) |
1.0890 |
1.0906(5)
|
1.0889 |
C(1)NH(7)
|
109.73
|
109.70(3)
|
108.91
|
C(5)NC(1) |
111.17 |
111.34(2)
|
111.43 |
NC(1)C(2) |
109.18 |
109.37(2)
|
113.93 |
C(1)C(2)C(3) |
110.21 |
110.31(2)
|
110.26 |
C(2)C(3)C(4) |
110.46 |
110.57(2)
|
110.26 |
NC(1)H(10) |
108.56 |
108.63(8)
|
107.10 |
NC(1)H(11) |
111.91 |
111.91(9)
|
109.02 |
C(1)C(2)H(12) |
108.54 |
108.56(12)
|
110.10 |
|
C(1)C(2)H(13) |
109.89 |
109.87(8)
|
109.43 |
|
C(2)C3)H(8) |
109.03 |
109.02(4)
|
109.00 |
|
C(2)C(3)H(9) |
110.67 |
110.62(4)
|
110.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 6. Piperidine. Rotational Constants (MHz). Normal Species. |
|
|
|
|
|
|
|
|
eq ropt |
eq Expt. [1] |
ax ropt |
ax Expt. [1] |
|
|
|
|
|
|
|
A |
4563.3 |
4527.2300(28)
|
4532.3
|
4494.3030(67)
|
|
B |
4475.6 |
4437.2288(28)
|
4425.9
|
4395.2753(67)
|
|
C |
2566.6 |
2542.9810(32)
|
2556.0
|
2535.6089(70)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1]
J.Demaison, N.C.Craig, P.Groner, P.Écija, E.J.Cocinero, A.Lesarri, and
H.D.Rudolph, J.Phys.Chem. A 119(9),1486(2015): Equatorial reSE and, for 14N, 1.5Xaa = 3.1498(71) MHz, 0.25(Xbb - Xcc) = 1.8989(25) MHz.
|
|
|
[2] H.Ehrlichmann, J.-U.Grabow, H.Dreizler, N.Heineking, and M.Andolfatto, Z.Naturforsch. 44a,841(1989). |
|
|
|
|
|
|
|
|
|
|
|
|
U.Spoerel and W.Stahl, Chem.Phys. 239,97(1998). In equatorial piperidine: Xaa(14N) = 2.1026(51), Xbb = 2.751, and Xcc = -4.8550 MHz. |
|
|
J.E.Parkin, P.J.Buckley, and C.C.Costain, J.Mol.Spectrosc. 89,465(1981): For the axial conformer, Xaa = -3.80, Xbb = 2.91, and Xcc = 0.83 MHz; and for the equatorial conformer, Xcc = -4.83 MHz. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Morpholine |
Pyridine
|
Pyrrolidine
|
Pyrrole
|
|
|
Dimethylamine |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table of Contents |
|
|
|
|
|
Molecules/Nitrogen |
|
|
|
|
|
Molecules/Deuterium |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Piperidine.html |
|
|
|
|
|
|
Last
Modified 6 Feb 2015 |
|
|
|
|
|
|
|
|
|
|